Skip to main content
Log in

Convergence proof of the DSMC method and the Gas-Kinetic Unified Algorithm for the Boltzmann equation

  • Article
  • Special Topic: Fluid Mechanics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

This paper investigates the convergence proof of the Direct Simulation Monte Carlo (DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation. It can be shown that the particle velocity distribution function obtained by the DSMC method converges to a modified form of the Boltzmann equation, which is the equation of the gas-kinetic unified algorithm to directly solve the molecular velocity distribution function. Their convergence is derived through mathematical treatment. The collision frequency is presented using various molecular models and the local equilibrium distribution function is obtained by Enskog expansion using the converged equation of the DSMC method. These two expressions agree with those used in the unified algorithm. Numerical validation of the converging consistency between these two approaches is illustrated by simulating the pressure driven Poiseuille flow in the slip transition flow regime and the two-dimensional and three-dimensional flows around a circular cylinder and spherical-cone reentry body covering the whole flow regimes from low speed micro-channel flow to high speed non-equilibrium aerothermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapmann S, Cowling T G. The Mathematical Theory of Non-Uniform Gases. 3rd ed. Cambridge: Cambridge University Press, 1970

    Google Scholar 

  2. Cercignani C. The Boltzmann Equation and Its Applications. New York: Springer-Verlag, 1988

    Book  MATH  Google Scholar 

  3. Grad H. On the kinetic theory of rarefied gases. Comm Pure Appl Math, 1949, 2: 331–407

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu C Y, Lees L. Kinetic theory description of plane compressible Couette flow. In: Talbot L, ed. Rarefied Gas Dynamics. New York: Academic Press, 1961. 391–428

    Google Scholar 

  5. Mott-Smith H M. The solution of the Boltzmann equation for a shock wave. Phys Rev, 1951, 82: 885–892

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Yen S M. Numerical solution of the nonlinear Boltzmann equation for nonequilibrium gas flow problems. Ann Rev Fluid Mech, 1984, 16: 67–97

    Article  ADS  Google Scholar 

  7. Yang J Y, Huang J C. Rarefied flow computations using nonlinear model Boltzmann equations. J Comput Phys, 1995, 120: 323–339

    Article  ADS  MATH  Google Scholar 

  8. Aristov V V. Direct methods for solving the Boltzmann equation and study of nonequilibrium flow. In: Moreau R, Thess A, eds. Fluid Mechanics and Its Applications, Vol. 60. Dordrecht: Kluwer Academic Publishers, 2001

    Google Scholar 

  9. Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum. J Comput Phys, 2004, 193: 708–738

    Article  ADS  MATH  Google Scholar 

  10. Heintz A, Kowalczyk P, Grzhibovskis R. Fast numerical method for the Boltzmann equation on non-uniform grids. J Comput Phys, 2008, 227: 6681–6695

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Li Z H, Zhang H X. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry. J Comput Phys, 2009, 228: 1116–1138

    Article  ADS  MATH  Google Scholar 

  12. Morris A B, Varghese P L, Goldstein D B. Monte Carlo solution of the Boltzmann equation via a discrete velocity model. J Comput Phys, 2011, 230: 1265–1280

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bird G A. Approach to translational equilibrium in a rigid sphere gas. Phys Fluids, 1963, 6: 1518–1519

    Article  ADS  Google Scholar 

  14. Borgnakke C, Larsen P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J Comput Phys, 1975, 18: 405–420

    Article  ADS  Google Scholar 

  15. Pham-van-Diep G, Erwin D, Muntz E P. Nonequilibrium molecular motion in a hypersonic shock wave. Science, 1985, 245: 624–626

    Article  ADS  Google Scholar 

  16. Carlson A B, Hassan H A. Direct simulation of reentry flows with ionization. J Thermophys Heat Transf, 1992, 6: 400–404

    Article  Google Scholar 

  17. Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994

    Google Scholar 

  18. Li Z H, Wu Z Y. DSMC simulation of hypersonic rarefied flow past Apollo-CM. Acta Aerodyn Sin, 1996, 2: 230–233

    Google Scholar 

  19. Ivanov M S, Vashchenkov P, Kashkovsky A. Numerical investigation of the EXPERT reentry vehicle aerothermodynamics along the descent trajectory. In: Proceedings of the 39th AIAA Thermophysics Conference. Miami: American Institute of Aeronautics and Astronautics, 2007

  20. Erwin D A, Pham-van-Diep G C, Muntz E P. Nonequilibrium gas flow I: A detailed validation of Monte Carlo direct simulation for momatomic gases. Phys Fluids A-Fluid Dyn, 1991, 3: 697–705

    Article  ADS  MATH  Google Scholar 

  21. Salomons E, Mareschal M. Usefulness of the Burnett description of strong shock waves. Phys Rev Lett, 1992, 69: 269–272

    Article  ADS  Google Scholar 

  22. Hadjiconstantiou N G. Analysis of discretization in direct simulation Monte Carlo. Phys Fluids, 2000, 12: 2634–2638

    Article  ADS  Google Scholar 

  23. Alexander F J, Garica A L, Alder B J. Cell size dependence of transport coefficients in stochastic particle algorithms. Phys Fluids, 1998, 10: 1540–1542

    Article  ADS  Google Scholar 

  24. Hadjiconstantinou N G, Garcia A L, Bazant M Z, et al. Statistical error in particle simulations of hydrodynamic phenomena. J Comput Phys, 2003, 187: 274–297

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems. Phys Rev, 1954, 94: 511–525

    Article  ADS  MATH  Google Scholar 

  26. Xu K, Li Z H. Microchannel flow in the slip regime: Gas-kinetic BGK-Burnett solutions. J Fluid Mech, 2004, 513: 87–110

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Vincenti W G, Kruger C H. Introduction to Physical Gas Dynamics. New York: Wiley, 1965

    Google Scholar 

  28. Holway L H. New statistical models for kinetic theory: Methods of construction. Phys Fluids, 1966, 9: 1658–1673

    Article  ADS  Google Scholar 

  29. Cercignani C, Tironi G. Nonlinear heat transfer between two parallel plates at large temperature ratios. In: Brundin C L, ed. Rarefied Gas Dynamics, Vol. 1. New York: Academic Press, 1967. 441–453

    Google Scholar 

  30. Andries P, le Tallec P, Perlat J, et al. The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur J Mech B-Fluids, 2000, 19(6): 813–830

    Article  MathSciNet  MATH  Google Scholar 

  31. Shakhov E M. Generalization of the Krook kinetic relaxation equation. Fluid Dyn, 1968, 3(1): 142–145

    Google Scholar 

  32. Segal B M, Ferziger J H. Shock-waves structure using nonlinear model Boltzmann equations. Phys Fluids, 1972, 15: 1233–1247

    Article  ADS  MATH  Google Scholar 

  33. Abe T, Oguchi H. A hierarchy kinetic model and its applications. In: Potter J I, ed. Progress in Astronautics and Aeronautics, Vol. 51. New York: American Institute of Aeronautics and Astronautics, 1977. 781–793

    Google Scholar 

  34. Li Z H. Study on Gas Kinetic Unified Algorithm for Flows from Rarefied Transition to Continuum. Dissertation for the Doctoral Degree. Mianyang: China Aerodynamics Research and Development Center, 2001

    Google Scholar 

  35. Li Z H, Zhang H X, Fu S. Gas kinetic algorithm for flows in Poiseuille-like microchannels using Boltzmann model equation. Sci China Ser G-Phys Mech Astron, 2005, 48(4): 496–512

    Article  ADS  Google Scholar 

  36. Li Z H, Zhang H X. Study on the unified algorithm for three-dimensional complex problems covering various flow regimes using Boltzmann model equation. Sci China Ser G-Phys Mech Astron, 2009, 52(1): 124–138

    Article  ADS  Google Scholar 

  37. Shakhov E M. Approximate kinetic equations in rarefied gas theory. Fluid Dyn, 1968, 3: 156–161

    Google Scholar 

  38. Li Z H, Zhang H X. Study on gas kinetic algorithm for flows from rarefied transition to continuum. In: Bartel T J, Gallis M A, eds. Proceedings of the 22nd International Symposium on Rarefied Gas Dynamics. Sydney: American Institute of Physics, 2000. 628–636

    Google Scholar 

  39. Li Z H, Zhang H X. Gas-kinetic numerical method solving mesoscopic velocity distribution function equation. Acta Mech Sin, 2007, 23(3): 121–132

    Article  ADS  MATH  Google Scholar 

  40. Li Z H. Gas-kinetic unified algorithm for re-entering complex problems covering various flow regimes by solving Boltzmann model equation. In: Hall J, ed. Advances in Spacecraft Technologies. Rijeka: InTech, 2011. 273–332

    Google Scholar 

  41. Zheng Y, Garcia A L, Alder B J. Comparison of kinetic theory and hydrodynamics for Poiseuille flow. J Stat Phys, 2002, 109: 495–505

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Huang L, Chen W F, Wu Q F. The studying of parallel algorithm for DSMC method with application to rarefied gas cylinder flowfield. Acta Aerodyn Sin, 2000, 18(4): 456–459

    Google Scholar 

  43. Sharipov F. Hypersonic flow of rarefied gas near the Brazilian satellite during its reentry into atmosphere. Braz J Phys, 2003, 33(2): 398–405

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiHui Li.

Additional information

Recommended by Wu ChuiJie (Editorial Board Member)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Fang, M., Jiang, X. et al. Convergence proof of the DSMC method and the Gas-Kinetic Unified Algorithm for the Boltzmann equation. Sci. China Phys. Mech. Astron. 56, 404–417 (2013). https://doi.org/10.1007/s11433-013-4999-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-4999-3

Keywords

Navigation