Skip to main content
Log in

Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

An optical platform for sensitive detection of chemical vapor based on a polymer-coated symmetrical metal-cladding waveguide is proposed. The diffusion of chemical vapor usually leads to a combinational effect in the polymer layer, i.e., swelling and refractive index change. Owing to the high sensitivity of ultrahigh-order modes, the vapor-induced effect will give rise to a dramatic variation of the reflected light intensity. For proof-of-concept, a good linearity and a low detection limit of toluene and benzene are experimentally demonstrated with an amorphous Teflon AF polymer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stetter J R, Li J. Amperometric gas sensors-a review. Chem Rev, 2008, 108: 352–366

    Article  Google Scholar 

  2. Stievater T H, Rabinovich W S, Ferraro M S, et al. Photonic microharp chemical sensors. Opt Express, 2008, 16: 2423–2430

    Article  ADS  Google Scholar 

  3. Mah C, Thurbide K B. Acoustic methods of detection in gas chromatography. J Separ Sci, 2006, 29: 1922–1930

    Article  Google Scholar 

  4. Forleo A, Francioso L, Capone S, et al. Synthesis and gas sensing properties of ZnO quantum dots. Sens Actuators B Chem, 2010, 146(1): 111–115

    Article  Google Scholar 

  5. Wei Q, Luo W D, Liao B, et al. Giant capacitance effect and physical model of nano crystalline Cuo-BaTiO3 semiconductor as a CO2 gas sensor. J Appl Phys, 2000, 88(8): 4818–4824

    Article  ADS  Google Scholar 

  6. Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287: 1801–1804

    Article  ADS  Google Scholar 

  7. Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance. Sens Actuators, 1982, 3: 79–88

    Article  Google Scholar 

  8. Notcovich A G, Zhuk V, Lipson S G. Surface plasmon resonance phase imaging. Appl Phys Lett, 2000, 76(13): 1665–1667

    Article  ADS  Google Scholar 

  9. Kabashin A V, Pstskovsky, Grigorenko A N. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt Express, 2009, 17(23): 21191–21204

    Article  Google Scholar 

  10. Warken F, Vetsch E, Meschede D, et al. Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fiber. Opt Express, 2007, 15: 11952–11958

    Article  ADS  Google Scholar 

  11. Lipp E D, Grosse R L. On-line monitoring of chlorosilane streams by Raman spectroscopy. Appl Spectrosc, 1998, 52: 42–46

    Article  ADS  Google Scholar 

  12. Content S, Trogler W C, Sailor M J. Detection of nitrobenzene, DNT, and TNT vapors by quenching of porous silicon photoluminescence. Chem Eur J, 2000, 6: 2205–2213

    Article  Google Scholar 

  13. Skivesen N, Horvath R, Pedersen H C. Multimode reverse-symmetry waveguide sensor for broad-range refractometry. Opt Lett, 2003, 28: 2473–2475

    Article  ADS  Google Scholar 

  14. Lowder T L, Gordon J D, Schultz S M, et al. Volatile organic compound sensing using a surface relief d-shaped fiber Bragg grating and a polydimethylsiloxane layer. Opt Lett, 2007, 32: 2523–2525

    Article  ADS  Google Scholar 

  15. Xiao G Z, Adnet A, Zhang Z, et al. Monitoring changes in the refractive index of gases by means of a fiber Fabry-Perot interferometer sensor. Sens Actuators A-Phys, 2005, 118: 177–182

    Article  Google Scholar 

  16. Podgorsek R P, Franke H. Selective optical detection of aromatic vapors. Appl Opt, 2002, 41(4): 601–608

    Article  ADS  Google Scholar 

  17. Sun Y Z, Shopova S I, Frye-Msaon G, et al. Rapid chemical vapor sensing using optofluidic ring resonators. Opt Lett, 2008, 33: 788–790

    Article  ADS  Google Scholar 

  18. Sun Y Z, Liu J, Howard D J, et al. Rapid tandem-column micro-gas chromatography based on optofluidic ring resonators with multi-point on-column detection. Analyst, 2010, 135: 165–171

    Article  ADS  Google Scholar 

  19. Li H G, Cao Z Q, Lu H F, et al. Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide. Appl Phys Lett, 2003, 83(14): 2757–2759

    Article  ADS  Google Scholar 

  20. Lu H F, Cao Z Q, Li H G, et al. Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide. Appl Phys Lett, 2004, 85(20): 4579–4581

    Article  ADS  Google Scholar 

  21. Gu J H, Chen G, Cao Z Q, et al. An intensity measurement refractometer based on a symmetric metal-clad waveguide structure. J Phys D-Appl Phys, 2008, 41: 185105

    Article  ADS  Google Scholar 

  22. Chen F, Cao Z Q, Shen Q S, et al. Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide. Opt Express, 2005, 13(25): 10061–10065

    Article  ADS  Google Scholar 

  23. Feng Y, Cao Z Q, Shen Q S, et al. Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection. Appl Opt, 2007, 46(1): 58–60

    Article  ADS  Google Scholar 

  24. Wang Y, Cao Z Q, Li H G, et al. Electric control of spatial beam position based on the Goos-Hänchen effect. Appl Phys Lett, 2008, 93: 091103

    Article  ADS  Google Scholar 

  25. Hewak D W, Lit J W Y. Generalized dispersion properties of a four-layer thin-film waveguide. Appl Opt, 1987, 26(6): 833–841

    Article  ADS  Google Scholar 

  26. Jaczewska J, Raptis I, Budkowski A, et al. Swelling of poly (3-alkyl-thiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters. Synth Metals, 2007, 157: 726–732

    Article  Google Scholar 

  27. Chaure S, Yang B, Hassan A K, et al. Interaction behavior of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases. J Phys D, 2004, 37: 1558–1562

    Article  ADS  Google Scholar 

  28. Wang Y Y, Zhou Z H, Yang Z, et al. Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection. Nanotechnology, 2009, 20(34): 345502

    Article  Google Scholar 

  29. Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. Sens Actuators B Chem, 1999, 54: 3–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PingPing Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, P., Deng, M. Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity. Sci. China Phys. Mech. Astron. 55, 2024–2029 (2012). https://doi.org/10.1007/s11433-012-4857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4857-8

Keywords

Navigation