Skip to main content
Log in

Observation of electron weak localization and correlation effects in disordered graphene

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We have studied the electron transport properties of a disordered graphene sample, where the disorder was intentionally strengthened by Ga+ ion irradiation. The magneto-conductance of the sample exhibits a typical two-dimensional electron weak localization behavior, with electron-electron interaction as the dominant dephasing mechanism. The absence of electron anti-weak localization in the sample implies strong intersublattice and/or intervalley scattering caused by the disorders. The temperature and bias-voltage dependencies of conductance clearly reveal the suppression of conductance at low energies, indicating opening of a Coulomb gap due to electron-electron interaction in the disordered graphene sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neto A H C, Novoselov K S, Geim A K, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–161

    Article  ADS  Google Scholar 

  2. Wallace P R. The band theory of graphite. Phys Rev, 1947, 71: 622–634

    Article  MATH  ADS  Google Scholar 

  3. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  ADS  Google Scholar 

  4. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 43, 8: 197–200

    Article  ADS  Google Scholar 

  5. Zhang Y B, Stormer H L, Kim P, et at. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438: 201–204

    Article  ADS  Google Scholar 

  6. Dresselhaus P D, Papavassiliou C M A, Wheeler R G, et al. Observation of spin precession in GaAs inversion layers using antilocalization. Phys Rev Lett, 1992, 68: 106–109

    Article  ADS  Google Scholar 

  7. Kurdak C, Biyikli N, Litvinov V I, et al. Weak antilocalization and zero-field electron spin splitting in AlxGa1-xN/AlN/GaN heterostructures with a polarization-induced two-dimensional electron gas. Phys Rev B, 2006, 74: 113308

    Article  ADS  Google Scholar 

  8. Suzuura H, Ando T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. Phys Rev Lett, 2002, 89: 266603

    Article  ADS  Google Scholar 

  9. Yan X Z, Ting C S. Weak localization of Dirac fermions in graphene. Phys Rev Lett, 2008, 101: 126801

    Article  ADS  Google Scholar 

  10. Stander N, Huard B, Goldhaber-Gordon D. Evidence for Klein tunneling in graphene p-n junctions. Phys Rev Lett, 2009, 102: 026807

    Article  ADS  Google Scholar 

  11. Morozov S V, Novoselov K S, Geim A K, et al. Strong suppression of weak localization in graphene. Phys Rev Lett, 2006, 97: 016801

    Article  ADS  Google Scholar 

  12. Wu X S, Sprinkle M, de Heer W A, et al. Weak antilocalization in epitaxial graphene: Evidence for chiral electrons. Phys Rev Lett, 2007, 98: 136801

    Article  ADS  Google Scholar 

  13. Tikhonenko F V, Horsell D W, Gorbachev R V, et al. Weak localization in graphene flakes. Phys Rev Lett, 2008, 100: 056802

    Article  ADS  Google Scholar 

  14. Zhang Y Y, Xie X C, Liu W M, et at. Localization and the Kosterlitz-Thouless transition in disordered graphene. Phys Rev Lett, 2009, 102: 106401

    Article  ADS  Google Scholar 

  15. Ferrari A C, Meyer J C, Geim A K, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006, 97: 187401

    Article  ADS  Google Scholar 

  16. Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183–191

    Article  ADS  Google Scholar 

  17. Martin J, Akerman N, Von Klitzing K, et al. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat Phys, 2007, 4: 144–148

    Article  Google Scholar 

  18. Asgari R, Vazifeh M M, Tanatar B, et al. Effect of disorder on the ground-state properties of graphene. Phys Rev B, 2008, 77: 125432

    Article  ADS  Google Scholar 

  19. Lee P A, Ramakrishnan T V. Disordered electronic systems. Rev Mod Phys, 1985, 57: 287–337

    Article  ADS  Google Scholar 

  20. Pollak M. Effect of carrier-carrier interactions on some transport properties in disordered semiconductors. Discuss Faraday Soc, 1970, 50: 13–19

    Article  Google Scholar 

  21. Srinivasan G. Statistical mechanics of charged traps in an amorphous semiconductor. Phys Rev B, 1971, 4: 2581–2589

    Article  ADS  Google Scholar 

  22. Kang N, Hu J S, Kong W J, et al. Consistent picture of strong electron correlation from magnetoresistance and tunneling conductance measurements in multiwall carbon nanotubes. Phys Rev B, 2002, 66: 241403

    Article  ADS  Google Scholar 

  23. Last B J, Thouless D J. Evidence for power law localization in disordered systems. J Phys C, 1974, 7: 699–715

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChangLi Yang or Li Lu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10774172 and 10874220), and the National Basic Research Program of China from the MOST (Grant No. 2006CB921304)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, C., Tan, Z., Ma, L. et al. Observation of electron weak localization and correlation effects in disordered graphene. Sci. China Ser. G-Phys. Mech. Astron. 52, 1293–1298 (2009). https://doi.org/10.1007/s11433-009-0187-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0187-x

Keywords

Navigation