Skip to main content
Log in

A survey on hyperspectral image restoration: from the view of low-rank tensor approximation

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The ability to capture fine spectral discriminative information enables hyperspectral images (HSIs) to observe, detect and identify objects with subtle spectral discrepancy. However, the captured HSIs may not represent the true distribution of ground objects and the received reflectance at imaging instruments may be degraded, owing to environmental disturbances, atmospheric effects, and sensors’ hardware limitations. These degradations include but are not limited to complex noise, heavy stripes, deadlines, cloud/shadow occlusion, blurring and spatial-resolution degradation, etc. These degradations dramatically reduce the quality and usefulness of HSIs. Low-rank tensor approximation (LRTA) is such an emerging technique, having gained much attention in the HSI restoration community, with an ever-growing theoretical foundation and pivotal technological innovation. Compared to low-rank matrix approximation (LRMA), LRTA characterizes more complex intrinsic structures of high-order data and owns more efficient learning abilities, being established to address convex and non-convex inverse optimization problems induced by HSI restoration. This survey mainly attempts to present a sophisticated, cutting-edge, and comprehensive technical survey of LRTA toward HSI restoration, specifically focusing on the following six topics: denoising, fusion, destriping, inpainting, deblurring, and super-resolution. For each topic, state-of-the-art restoration methods are introduced, with quantitative and visual performance assessments. Open issues and challenges are also presented, including model formulation, algorithm design, prior exploration, and application concerning the interpretation requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gu Y F, Liu T Z, Gao G M, et al. Multimodal hyperspectral remote sensing: an overview and perspective. Sci China Inf Sci, 2021, 64: 121301

    Article  Google Scholar 

  2. Lodhi V, Chakravarty D, Mitra P. Hyperspectral imaging for earth observation: platforms and instruments. J Ind Inst Sci, 2018, 98: 429–443

    Article  Google Scholar 

  3. ElMasry G, Sun D W. Principles of hyperspectral imaging technology. In: Hyperspectral Imaging for Food Quality Analysis and Control. Pittsburgh: Academic Press, 2010. 3–43

    Chapter  Google Scholar 

  4. Gao L, Smith R T. Optical hyperspectral imaging in microscopy and spectroscopy—a review of data acquisition. J Biophoton, 2015, 8: 441–456

    Article  Google Scholar 

  5. Li J, Li Y F, He L, et al. Spatio-temporal fusion for remote sensing data: an overview and new benchmark. Sci China Inf Sci, 2020, 63: 140301

    Article  MathSciNet  Google Scholar 

  6. Hou Z F, Li W, Tao R, et al. Collaborative representation with background purification and saliency weight for hyperspectral anomaly detection. Sci China Inf Sci, 2022, 65: 112305

    Article  Google Scholar 

  7. Plaza A, Benediktsson J A, Boardman J W, et al. Recent advances in techniques for hyperspectral image processing. Remote Sens Environ, 2009, 113: S110–S122

    Article  Google Scholar 

  8. Ghamisi P, Yokoya N, Li J, et al. Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci Remote Sens Mag, 2017, 5: 37–78

    Article  Google Scholar 

  9. Babey S K, Anger C D. Compact airborne spectrographic imager (CASI): a progress review. In: Proceedings of SPIE, 1993. 1937: 152–163

  10. Nischan M L, Kerekes J P, Baum J E, et al. Analysis of HYDICE noise characteristics and their impact on subpixel object detection. In: Proceedings of SPIE, 1999. 3753: 112–123

  11. McKeown D M, Cochran S D, Ford S J, et al. Fusion of HYDICE hyperspectral data with panchromatic imagery for cartographic feature extraction. IEEE Trans Geosci Remote Sens, 1999, 37: 1261–1277

    Article  Google Scholar 

  12. Loizzo R, Guarini R, Longo F, et al. PRISMA: the Italian hyperspectral mission. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Valencia, 2018. 175–178

  13. Iwasaki A, Ohgi N, Tanii J, et al. Hyperspectral Imager Suite (HISUI)-Japanese hyper-multi spectral radiometer. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Vancouver, 2011. 1025–1028

  14. Eckardt A, Horack J, Lehmann F, et al. Desis (DLR earth sensing imaging spectrometer for the iss-muses platform). In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Milan, 2015. 1457–1459

  15. Alonso K, Bachmann M, Burch K, et al. Data products, quality and validation of the DLR earth sensing imaging spectrometer (DESIS). Sensors, 2019, 19: 4471

    Article  Google Scholar 

  16. Barnsley M J, Settle J J, Cutter M A, et al. The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere. IEEE Trans Geosci Remote Sens, 2004, 42: 1512–1520

    Article  Google Scholar 

  17. Guanter L, Kaufmann H, Segl K, et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens, 2015, 7: 8830–8857

    Article  Google Scholar 

  18. Pearlman J S, Barry P S, Segal C C, et al. Hyperion, a space-based imaging spectrometer. IEEE Trans Geosci Remote Sens, 2003, 41: 1160–1173

    Article  Google Scholar 

  19. Ungar S G, Pearlman J S, Mendenhall J A, et al. Overview of the earth observing one (EO-1) mission. IEEE Trans Geosci Remote Sens, 2003, 41: 1149–1159

    Article  Google Scholar 

  20. Vane G, Green R O, Chrien T G, et al. The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ, 1993, 44: 127–143

    Article  Google Scholar 

  21. Cocks T, Jenssen R, Stewart A, et al. The HyMapTM airborne hyperspectral sensor: the system, calibration and performance. In: Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, 1998. 37–42

  22. Kruse F A, Boardman J W, Lefkoff A B, et al. HyMap: an Australian hyperspectral sensor solving global problems-results from USA HyMap data acquisitions. In: Proceedings of the 10th Australasian Remote Sensing and Photogrammetry Conference, Sydney, 2000. 18–23

  23. Qian S E. Hyperspectral satellites, evolution, and development history. IEEE J Sel Top Appl Earth Observations Remote Sens, 2021, 14: 7032–7056

    Article  Google Scholar 

  24. Scheffler D, Karrasch P. Preprocessing of hyperspectral images: a comparative study of destriping algorithms for EO1-Hyperion. In: Proceedings of SPIE, 2013. 8892: 120–134

  25. Holzwarth S, Muller A, Habermeyer M, et al. HySens-DAIS 7915/ROSIS imaging spectrometers at DLR. In: Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, 2003. 3–14

  26. Zhong Y, Wang X, Wang S, et al. Advances in spaceborne hyperspectral remote sensing in China. Geo-spatial Inf Sci, 2021, 24: 95–120

    Article  Google Scholar 

  27. Liu Y N, Zhang J, Zhang Y, et al. The advanced hyperspectral imager: aboard China’s GaoFen-5 satellite. IEEE Geosci Remote Sens Mag, 2019, 7: 23–32

    Article  Google Scholar 

  28. Jia J, Wang Y, Chen J, et al. Status and application of advanced airborne hyperspectral imaging technology: a review. Infrared Phys Tech, 2020, 104: 103115

    Article  Google Scholar 

  29. Wu X, Li W, Hong D, et al. Deep learning for unmanned aerial vehicle-based object detection and tracking: a survey. IEEE Geosci Remote Sens Mag, 2022, 10: 91–124

    Article  Google Scholar 

  30. Rodet T, Orieux F, Giovannelli J F, et al. Data inversion for hyperspectral objects in astronomy. In: Proceedings of the 1st Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, 2009. 1–4

  31. Bioucas-Dias J M, Plaza A, Camps-Valls G, et al. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens Mag, 2013, 1: 6–36

    Article  Google Scholar 

  32. Lu B, Dao P D, Liu J, et al. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens, 2020, 12: 2659

    Article  Google Scholar 

  33. Adão T, Hruška J, Pádua L, et al. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens, 2017, 9: 1110

    Article  Google Scholar 

  34. Lv M, Li W, Chen T, et al. Discriminant tensor-based manifold embedding for medical hyperspectral imagery. IEEE J Biomed Health Inform, 2021, 25: 3517–3528

    Article  Google Scholar 

  35. Govender M, Chetty K, Bulcock H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa, 2009, 33: 145–151

    Article  Google Scholar 

  36. Kerekes J P. Exploring limits in hyperspectral unresolved object detection. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Vancouver, 2011. 4415–4418

  37. Rasti B, Chang Y, Dalsasso E, et al. Image restoration for remote sensing: overview and toolbox. IEEE Geosci Remote Sens Mag, 2022, 10: 201–230

    Article  Google Scholar 

  38. Liu N, Li W, Tao R, et al. Wavelet-domain low-rank/group-sparse destriping for hyperspectral imagery. IEEE Trans Geosci Remote Sens, 2019, 57: 10310–10321

    Article  Google Scholar 

  39. Goetz A F H, Vane G, Solomon J E, et al. Imaging spectrometry for earth remote sensing. Science, 1985, 228: 1147–1153

    Article  Google Scholar 

  40. Levin I M, Levina E. Effect of atmospheric interference and sensor noise in retrieval of optically active materials in the ocean by hyperspectral remote sensing. Appl Opt, 2007, 46: 6896–6906

    Article  Google Scholar 

  41. Acito N, Diani M, Corsini G. Signal-dependent noise modeling and model parameter estimation in hyperspectral images. IEEE Trans Geosci Remote Sens, 2011, 49: 2957–2971

    Article  Google Scholar 

  42. Hong D, He W, Yokoya N, et al. Interpretable hyperspectral artificial intelligence: when nonconvex modeling meets hyperspectral remote sensing. IEEE Geosci Remote Sens Mag, 2021, 9: 52–87

    Article  Google Scholar 

  43. Dian R, Li S, Sun B, et al. Recent advances and new guidelines on hyperspectral and multispectral image fusion. Inf Fusion, 2021, 69: 40–51

    Article  Google Scholar 

  44. Yokoya N, Grohnfeldt C, Chanussot J. Hyperspectral and multispectral data fusion: a comparative review of the recent literature. IEEE Geosci Remote Sens Mag, 2017, 5: 29–56

    Article  Google Scholar 

  45. Hirano A, Madden M, Welch R. Hyperspectral image data for mapping wetland vegetation. Wetlands, 2003, 23: 436–448

    Article  Google Scholar 

  46. Kwan C, Choi J H, Chan S, et al. Resolution enhancement for hyperspectral images: a super-resolution and fusion approach. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, 2017. 6180–6184

  47. Suchitha K, Premananda B S, Singh A K. High spatial resolution hyperspectral image using fusion technique. In: Proceedings of International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, 2017. 348–353

  48. Mookambiga A, Gomathi V. Comprehensive review on fusion techniques for spatial information enhancement in hyperspectral imagery. Multidim Syst Sign Process, 2016, 27: 863–889

    Article  MathSciNet  Google Scholar 

  49. Eismann M T, Hardie R C. Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions. IEEE Trans Geosci Remote Sens, 2005, 43: 455–465

    Article  Google Scholar 

  50. Hardie R C, Eismann M T, Wilson G L. MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor. IEEE Trans Image Process, 2004, 13: 1174–1184

    Article  Google Scholar 

  51. Loncan L, de Almeida L B, Bioucas-Dias J M, et al. Hyperspectral pansharpening: a review. IEEE Geosci Remote Sens Mag, 2015, 3: 27–46

    Article  Google Scholar 

  52. Alparone L, Wald L, Chanussot J, et al. Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data-fusion contest. IEEE Trans Geosci Remote Sens, 2007, 45: 3012–3021

    Article  Google Scholar 

  53. Vella M, Zhang B, Chen W, et al. Enhanced hyperspectral image super-resolution via RGB fusion and TV-TV minimization. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Anchorage, 2021. 3837–3841

  54. Veganzones M A, Simoes M, Licciardi G, et al. Hyperspectral super-resolution of locally low rank images from complementary multisource data. IEEE Trans Image Process, 2015, 25: 274–288

    Article  MathSciNet  Google Scholar 

  55. Xue J, Zhao Y, Liao W, et al. Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising. IEEE Trans Geosci Remote Sens, 2019, 57: 5174–5189

    Article  Google Scholar 

  56. Xue J, Zhao Y, Liao W, et al. Nonlocal tensor sparse representation and low-rank regularization for hyperspectral image compressive sensing reconstruction. Remote Sens, 2019, 11: 193

    Article  Google Scholar 

  57. Wang Y, Peng J, Zhao Q, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. IEEE J Sel Top Appl Earth Observations Remote Sens, 2017, 11: 1227–1243

    Article  Google Scholar 

  58. Huang Z, Li S, Fang L, et al. Hyperspectral image denoising with group sparse and low-rank tensor decomposition. IEEE Access, 2017, 6: 1380–1390

    Article  Google Scholar 

  59. Chen Y, He W, Yokoya N, et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition. IEEE Trans Cybern, 2019, 50: 3556–3570

    Article  Google Scholar 

  60. Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Rev, 2009, 51: 455–500

    Article  MathSciNet  Google Scholar 

  61. de Lathauwer L. Decompositions of a higher-order tensor in block terms-part II: definitions and uniqueness. SIAM J Matrix Anal Appl, 2008, 30: 1033–1066

    Article  MathSciNet  Google Scholar 

  62. Ding M, Fu X, Huang T Z, et al. Hyperspectral super-resolution via interpretable block-term tensor modeling. IEEE J Sel Top Signal Process, 2020, 15: 641–656

    Article  Google Scholar 

  63. Cichocki A, Lee N, Oseledets I, et al. Tensor networks for dimensionality reduction and large-scale optimization: part 1 low-rank tensor decompositions. FNT Machine Learn, 2016, 9: 249–429

    Article  Google Scholar 

  64. Oseledets I V. Tensor-train decomposition. SIAM J Sci Comput, 2011, 33: 2295–2317

    Article  MathSciNet  Google Scholar 

  65. Zhao Q, Zhou G, Xie S, et al. Tensor ring decomposition. 2016. ArXiv:1606.05535

  66. Kilmer M E, Braman K, Hao N, et al. Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J Matrix Anal Appl, 2013, 34: 148–172

    Article  MathSciNet  Google Scholar 

  67. Comon P. Tensors: a brief introduction. IEEE Signal Process Mag, 2014, 31: 44–53

    Article  Google Scholar 

  68. Sorber L, van Barel M, de Lathauwer L. Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(Lr, Lr, 1) terms, and a new generalization. SIAM J Optim, 2013, 23: 695–720

    Article  MathSciNet  Google Scholar 

  69. Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966, 31: 279–311

    Article  MathSciNet  Google Scholar 

  70. Prevost C, Usevich K, Comon P, et al. Hyperspectral super-resolution with coupled tucker approximation: recoverability and SVD-based algorithms. IEEE Trans Signal Process, 2020, 68: 931–946

    Article  MathSciNet  Google Scholar 

  71. de Lathauwer L. A survey of tensor methods. In: Proceedings of IEEE International Symposium on Circuits and Systems, Taiwan, 2009. 2773–2776

  72. Zhang Z, Ely G, Aeron S, et al. Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014. 3842–3849

  73. Chen J, Saad Y. On the tensor SVD and the optimal low rank orthogonal approximation of tensors. SIAM J Matrix Anal Appl, 2009, 30: 1709–1734

    Article  MathSciNet  Google Scholar 

  74. Zhang Z, Aeron S. Exact tensor completion using t-SVD. IEEE Trans Signal Process, 2016, 65: 1511–1526

    Article  MathSciNet  Google Scholar 

  75. Holtz S, Rohwedder T, Schneider R. The alternating linear scheme for tensor optimization in the tensor train format. SIAM J Sci Comput, 2012, 34: A683–A713

    Article  MathSciNet  Google Scholar 

  76. Yuan L, Li C, Mandic D, et al. Tensor ring decomposition with rank minimization on latent space: an efficient approach for tensor completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, 2019. 33: 9151–9158

  77. Wang W, Aggarwal V, Aeron S. Efficient low rank tensor ring completion. In: Proceedings of the IEEE International Conference on Computer Vision, 2017. 5697–5705

  78. Sedighin F, Cichocki A, Phan A H. Adaptive rank selection for tensor ring decomposition. IEEE J Sel Top Signal Process, 2021, 15: 454–463

    Article  Google Scholar 

  79. Liu J, Musialski P, Wonka P, et al. Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell, 2012, 35: 208–220

    Article  Google Scholar 

  80. Grasedyck L, Kressner D, Tobler C. A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen, 2013, 36: 53–78

    Article  MathSciNet  Google Scholar 

  81. Xu Y, Wu Z, Chanussot J, et al. Hyperspectral images super-resolution via learning high-order coupled tensor ring representation. IEEE Trans Neural Netw Learn Syst, 2020, 31: 4747–4760

    Article  MathSciNet  Google Scholar 

  82. Kanatsoulis C I, Fu X, Sidiropoulos N D, et al. Hyperspectral super-resolution: a coupled tensor factorization approach. IEEE Trans Signal Process, 2018, 66: 6503–6517

    Article  MathSciNet  Google Scholar 

  83. Xu Y, Wu Z, Chanussot J, et al. Nonlocal coupled tensor CP decomposition for hyperspectral and multispectral image fusion. IEEE Trans Geosci Remote Sens, 2019, 58: 348–362

    Article  Google Scholar 

  84. Zhang K, Wang M, Yang S, et al. Spatial-spectral-graph-regularized low-rank tensor decomposition for multispectral and hyperspectral image fusion. IEEE J Sel Top Appl Earth Observations Remote Sens, 2018, 11: 1030–1040

    Article  Google Scholar 

  85. Liu N, Li L, Li W, et al. Hyperspectral restoration and fusion with multispectral imagery via low-rank tensor-approximation. IEEE Trans Geosci Remote Sens, 2021, 59: 7817–7830

    Article  Google Scholar 

  86. Dian R, Li S. Hyperspectral image super-resolution via subspace-based low tensor multi-rank regularization. IEEE Trans Image Process, 2019, 28: 5135–5146

    Article  MathSciNet  Google Scholar 

  87. Dian R, Li S, Fang L. Learning a low tensor-train rank representation for hyperspectral image super-resolution. IEEE Trans Neural Netw Learn Syst, 2019, 30: 2672–2683

    Article  MathSciNet  Google Scholar 

  88. Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process, 2007, 16: 2080–2095

    Article  MathSciNet  Google Scholar 

  89. Maggioni M, Katkovnik V, Egiazarian K, et al. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans Image Process, 2012, 22: 119–133

    Article  MathSciNet  Google Scholar 

  90. Pande-Chhetri R, Abd-Elrahman A. De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering. ISPRS J Photogrammetry Remote Sens, 2011, 66: 620–636

    Article  Google Scholar 

  91. Rasti B, Sveinsson J R, Ulfarsson M O, et al. Hyperspectral image denoising using first order spectral roughness penalty in wavelet domain. IEEE J Sel Top Appl Earth Observations Remote Sens, 2013, 7: 2458–2467

    Article  Google Scholar 

  92. Xie T, Li S, Fang L, et al. Tensor completion via nonlocal low-rank regularization. IEEE Trans Cybern, 2018, 49: 2344–2354

    Article  Google Scholar 

  93. Fu Y, Lam A, Sato I, et al. Adaptive spatial-spectral dictionary learning for hyperspectral image denoising. In: Proceedings of the IEEE International Conference on Computer Vision, Santiago, 2015. 343–351

  94. Peng Y, Meng D, Xu Z, et al. Decomposable nonlocal tensor dictionary learning for multispectral image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus Ohio, 2014. 2949–2956

  95. Zhao Y-Q, Yang J X. Hyperspectral image denoising via sparse representation and low-rank constraint. IEEE Trans Geosci Remote Sens, 2014, 53: 296–308

    Article  Google Scholar 

  96. Lu T, Li S, Fang L, et al. Spectral-spatial adaptive sparse representation for hyperspectral image denoising. IEEE Trans Geosci Remote Sens, 2015, 54: 373–385

    Article  Google Scholar 

  97. Li J, Yuan Q, Shen H, et al. Noise removal from hyperspectral image with joint spectral-spatial distributed sparse representation. IEEE Trans Geosci Remote Sens, 2016, 54: 5425–5439

    Article  Google Scholar 

  98. Zhang H Y, He W, Zhang L P, et al. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans Geosci Remote Sens, 2013, 52: 4729–4743

    Article  Google Scholar 

  99. He W, Zhang H, Zhang L, et al. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation. IEEE J Sel Top Appl Earth Observations Remote Sens, 2015, 8: 3050–3061

    Article  Google Scholar 

  100. Zhang H. Hyperspectral image denoising with cubic total variation model. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2012, 7: 95–98

    Article  Google Scholar 

  101. Jiang C, Zhang H, Zhang L, et al. Hyperspectral image denoising with a combined spatial and spectral weighted hyperspectral total variation model. Canadian J Remote Sens, 2016, 42: 53–72

    Article  Google Scholar 

  102. He W, Zhang H, Zhang L, et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans Geosci Remote Sens, 2015, 54: 178–188

    Article  Google Scholar 

  103. Chang Y, Yan L, Wu T, et al. Remote sensing image stripe noise removal: from image decomposition perspective. IEEE Trans Geosci Remote Sens, 2016, 54: 7018–7031

    Article  Google Scholar 

  104. He W, Zhang H, Shen H, et al. Hyperspectral image denoising using local low-rank matrix recovery and global spatial-spectral total variation. IEEE J Sel Top Appl Earth Observations Remote Sens, 2018, 11: 713–729

    Article  Google Scholar 

  105. Chen Y, He W, Yokoya N, et al. Nonlocal tensor-ring decomposition for hyperspectral image denoising. IEEE Trans Geosci Remote Sens, 2019, 58: 1348–1362

    Article  Google Scholar 

  106. He W, Yokoya N, Yuan L, et al. Remote sensing image reconstruction using tensor ring completion and total variation. IEEE Trans Geosci Remote Sens, 2019, 57: 8998–9009

    Article  Google Scholar 

  107. Chang Y, Yan L, Zhao X L, et al. Weighted low-rank tensor recovery for hyperspectral image restoration. IEEE Trans Cybern, 2020, 50: 4558–4572

    Article  Google Scholar 

  108. Zheng Y B, Huang T Z, Zhao X L, et al. Double-factor-regularized low-rank tensor factorization for mixed noise removal in hyperspectral image. IEEE Trans Geosci Remote Sens, 2020, 58: 8450–8464

    Article  Google Scholar 

  109. Zheng Y B, Huang T Z, Zhao X L, et al. Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Trans Geosci Remote Sens, 2019, 58: 734–749

    Article  Google Scholar 

  110. He W, Yao Q, Li C, et al. Non-local meets global: an iterative paradigm for hyperspectral image restoration. 2020. ArXiv:2010.12921

  111. Fan H, Chen Y, Guo Y, et al. Hyperspectral image restoration using low-rank tensor recovery. IEEE J Sel Top Appl Earth Observations Remote Sens, 2017, 10: 4589–4604

    Article  Google Scholar 

  112. Fan H, Li C, Guo Y, et al. Spatial-spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising. IEEE Trans Geosci Remote Sens, 2018, 56: 6196–6213

    Article  Google Scholar 

  113. Hu T, Li W, Liu N, et al. Hyperspectral image restoration using adaptive anisotropy total variation and nuclear norms. IEEE Trans Geosci Remote Sens, 2020, 59: 1516–1533

    Article  Google Scholar 

  114. Liu S, Xie X, Kong W. Hyperspectral image restoration via multi-mode and double-weighted tensor nuclear norm minimization. 2021. ArXiv:2101.07681

  115. Zhang H, Liu L, He W, et al. Hyperspectral image denoising with total variation regularization and nonlocal low-rank tensor decomposition. IEEE Trans Geosci Remote Sens, 2019, 58: 3071–3084

    Article  Google Scholar 

  116. Gong X, Chen W, Chen J. A low-rank tensor dictionary learning method for hyperspectral image denoising. IEEE Trans Signal Process, 2020, 68: 1168–1180

    Article  MathSciNet  Google Scholar 

  117. Chang Y, Yan L, Chen B, et al. Hyperspectral image restoration: where does the low-rank property exist. IEEE Trans Geosci Remote Sens, 2020, 59: 6869–6884

    Article  Google Scholar 

  118. Xie Q, Zhao Q, Meng D, et al. Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans Pattern Anal Mach Intell, 2017, 40: 1888–1902

    Article  Google Scholar 

  119. Chang Y, Yan L, Zhong S. Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu Hawaii, 2017. 4260–4268

  120. Wang K, Wang Y, Zhao X L, et al. Hyperspectral and multispectral image fusion via nonlocal low-rank tensor decomposition and spectral unmixing. IEEE Trans Geosci Remote Sens, 2020, 58: 7654–7671

    Article  Google Scholar 

  121. Selva M, Aiazzi B, Butera F, et al. Hyper-sharpening: a first approach on SIM-GA data. IEEE J Sel Top Appl Earth Observations Remote Sens, 2015, 8: 3008–3024

    Article  Google Scholar 

  122. Chen Z, Pu H, Wang B, et al. Fusion of hyperspectral and multispectral images: a novel framework based on generalization of pan-sharpening methods. IEEE Geosci Remote Sens Lett, 2014, 11: 1418–1422

    Article  Google Scholar 

  123. Simoes M, Bioucas-Dias J, Almeida L B, et al. A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans Geosci Remote Sens, 2014, 53: 3373–3388

    Article  Google Scholar 

  124. Huang B, Song H H, Cui H B, et al. Spatial and spectral image fusion using sparse matrix factorization. IEEE Trans Geosci Remote Sens, 2013, 52: 1693–1704

    Article  Google Scholar 

  125. Akhtar N, Shafait F, Mian A. Sparse spatio-spectral representation for hyperspectral image super-resolution. In: Proceedings of European Conference on Computer Vision, Zurich, 2014. 63–78

  126. Wei Q, Bioucas-Dias J, Dobigeon N, et al. Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans Geosci Remote Sens, 2015, 53: 3658–3668

    Article  Google Scholar 

  127. Yokoya N, Yairi T, Iwasaki A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans Geosci Remote Sens, 2011, 50: 528–537

    Article  Google Scholar 

  128. Li S, Dian R, Fang L, et al. Fusing hyperspectral and multispectral images via coupled sparse tensor factorization. IEEE Trans Image Process, 2018, 27: 4118–4130

    Article  MathSciNet  Google Scholar 

  129. Dian R, Fang L, Li S. Hyperspectral image super-resolution via non-local sparse tensor factorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017. 5344–5353

  130. Xu Y, Wu Z, Chanussot J, et al. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution. IEEE Trans Image Process, 2019, 28: 3034–3047

    Article  MathSciNet  Google Scholar 

  131. Borsoi R A, Prevost C, Usevich K, et al. Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability. IEEE J Sel Top Signal Process, 2021, 15: 702–717

    Article  Google Scholar 

  132. Kanatsoulis C I, Fu X, Sidiropoulos N D, et al. Hyperspectral super-resolution via coupled tensor factorization: identifiability and algorithms. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, 2018. 3191–3195

  133. He W, Chen Y, Yokoya N, et al. Hyperspectral super-resolution via coupled tensor ring factorization. Pattern Recognition, 2022, 122: 108280

    Article  Google Scholar 

  134. Xu T, Huang T Z, Deng L J, et al. Hyperspectral image superresolution using unidirectional total variation with tucker decomposition. IEEE J Sel Top Appl Earth Observations Remote Sens, 2020, 13: 4381–4398

    Article  Google Scholar 

  135. Oeding L, Robeva E, Sturmfels B. Decomposing tensors into frames. Adv Appl Math, 2016, 73: 125–153

    Article  MathSciNet  Google Scholar 

  136. Zhou Y, Rangarajan A, Gader P D. An integrated approach to registration and fusion of hyperspectral and multispectral images. IEEE Trans Geosci Remote Sens, 2019, 58: 3020–3033

    Article  Google Scholar 

  137. Qu Y, Qi H, Kwan C, et al. Unsupervised and unregistered hyperspectral image super-resolution with mutual Dirichlet-Net. IEEE Trans Geosci Remote Sens, 2022, 60: 1–18

    Google Scholar 

  138. Liu N, Li W, Tao R, et al. Multigraph-based low-rank tensor approximation for hyperspectral image restoration. IEEE Trans Geosci Remote Sens, 2022, 60: 1–14

    Google Scholar 

  139. Peng Y, Li W, Luo X, et al. Hyperspectral image superresolution using global gradient sparse and nonlocal low-rank tensor decomposition with hyper-laplacian prior. IEEE J Sel Top Appl Earth Observations Remote Sens, 2021, 14: 5453–5469

    Article  Google Scholar 

  140. Xue J, Zhao Y Q, Bu Y, et al. Spatial-spectral structured sparse low-rank representation for hyperspectral image superresolution. IEEE Trans Image Process, 2021, 30: 3084–3097

    Article  MathSciNet  Google Scholar 

  141. Wald L, Ranchin T, Mangolini M. Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogrammetric Eng Remote Sensing, 1997, 63: 691–699

    Google Scholar 

  142. Rogass C, Mielke C, Scheffler D, et al. Reduction of uncorrelated striping noise-applications for hyperspectral pushbroom acquisitions. Remote Sens, 2014, 6: 11082–11106

    Article  Google Scholar 

  143. Meza P, Pezoa J E, Torres S N. Multidimensional striping noise compensation in hyperspectral imaging: exploiting hypercubes’ spatial, spectral, and temporal redundancy. IEEE J Sel Top Appl Earth Observations Remote Sens, 2016, 9: 4428–4441

    Article  Google Scholar 

  144. Chen Y, Cao X, Zhao Q, et al. Denoising hyperspectral image with non-i.i.d. noise structure. IEEE Trans Cybern, 2017, 48: 1054–1066

    Article  Google Scholar 

  145. Rasti B, Scheunders P, Ghamisi P, et al. Noise reduction in hyperspectral imagery: overview and application. Remote Sens, 2018, 10: 482

    Article  Google Scholar 

  146. Gadallah F L, Csillag F, Smith E J M. Destriping multisensor imagery with moment matching. Int J Remote Sens, 2000, 21: 2505–2511

    Article  Google Scholar 

  147. Carfantan H, Idier J. Statistical linear destriping of satellite-based pushbroom-type images. IEEE Trans Geosci Remote Sens, 2009, 48: 1860–1871

    Article  Google Scholar 

  148. Srinivasan R, Cannon M, White J. Landsat data destriping using power spectral filtering. Opt Eng, 1988, 27: 939–943

    Article  Google Scholar 

  149. Chen J S, Shao Y, Guo H D, et al. Destriping CMODIS data by power filtering. IEEE Trans Geosci Remote Sens, 2003, 41: 2119–2124

    Article  Google Scholar 

  150. Liu J G, Morgan G L K. FFT selective and adaptive filtering for removal of systematic noise in ETM+ imageodesy images. IEEE Trans Geosci Remote Sens, 2006, 44: 3716–3724

    Article  Google Scholar 

  151. Chen J, Lin H, Shao Y, et al. Oblique striping removal in remote sensing imagery based on wavelet transform. Int J Remote Sens, 2006, 27: 1717–1723

    Article  Google Scholar 

  152. Shen H F, Zhang L P. A MAP-based algorithm for destriping and inpainting of remotely sensed images. IEEE Trans Geosci Remote Sens, 2008, 47: 1492–1502

    Article  Google Scholar 

  153. Chang Y, Yan L, Fang H, et al. Simultaneous destriping and denoising for remote sensing images with unidirectional total variation and sparse representation. IEEE Geosci Remote Sens Lett, 2013, 11: 1051–1055

    Article  Google Scholar 

  154. Chang Y, Yan L X, Fang H Z, et al. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping. IEEE Trans Image Process, 2015, 24: 1852–1866

    Article  MathSciNet  Google Scholar 

  155. Torres J, Infante S O. Wavelet analysis for the elimination of striping noise in satellite images. Opt Eng, 2001, 40: 1309–1314

    Article  Google Scholar 

  156. Münch B, Trtik P, Marone F, et al. Stripe and ring artifact removal with combined wavelet-Fourier filtering. Opt Express, 2009, 17: 8567–8591

    Article  Google Scholar 

  157. Pande-Chhetri R, Abd-Elrahman A. Filtering high-resolution hyperspectral imagery in a maximum noise fraction transform domain using wavelet-based de-striping. Int J Remote Sens, 2013, 34: 2216–2235

    Article  Google Scholar 

  158. Cao Y, He Z, Yang J, et al. A multi-scale non-uniformity correction method based on wavelet decomposition and guided filtering for uncooled long wave infrared camera. Signal Processing-Image Communication, 2018, 60: 13–21

    Article  Google Scholar 

  159. Lu X, Wang Y, Yuan Y. Graph-regularized low-rank representation for destriping of hyperspectral images. IEEE Trans Geosci Remote Sens, 2013, 51: 4009–4018

    Article  Google Scholar 

  160. Cao W, Chang Y, Han G, et al. Destriping remote sensing image via low-rank approximation and nonlocal total variation. IEEE Geosci Remote Sens Lett, 2018, 15: 848–852

    Article  Google Scholar 

  161. Yang J H, Zhao X L, Ma T H, et al. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J Comput Appl Math, 2020, 363: 124–144

    Article  MathSciNet  Google Scholar 

  162. Chen Y, Huang T Z, Zhao X L. Destriping of multispectral remote sensing image using low-rank tensor decomposition. IEEE J Sel Top Appl Earth Observations Remote Sens, 2018, 11: 4950–4967

    Article  Google Scholar 

  163. Wang J L, Huang T Z, Ma T H, et al. A sheared low-rank model for oblique stripe removal. Appl Math Computation, 2019, 360: 167–180

    Article  MathSciNet  Google Scholar 

  164. Hu Y, Zhang D, Ye J, et al. Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans Pattern Anal Mach Intell, 2012, 35: 2117–2130

    Article  Google Scholar 

  165. Sidorov O, Hardeberg J Y. Deep hyperspectral prior: single-image denoising, inpainting, super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul Korea, 2019

  166. Zhuang L, Bioucas-Dias J M. Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations. IEEE J Sel Top Appl Earth Observations Remote Sens, 2018, 11: 730–742

    Article  Google Scholar 

  167. Teodoro A M, Bioucas-Dias J M, Figueiredo M A T. Block-Gaussian-mixture priors for hyperspectral denoising and inpainting. IEEE Trans Geosci Remote Sens, 2020, 59: 2478–2486

    Article  Google Scholar 

  168. Chen A. The inpainting of hyperspectral images: a survey and adaptation to hyperspectral data. In: Proceedings of SPIE, 2012. 8537: 434–441

  169. Davenport M A, Romberg J. An overview of low-rank matrix recovery from incomplete observations. IEEE J Sel Top Signal Process, 2016, 10: 608–622

    Article  Google Scholar 

  170. Zhou P, Lu C, Lin Z, et al. Tensor factorization for low-rank tensor completion. IEEE Trans Image Process, 2017, 27: 1152–1163

    Article  MathSciNet  Google Scholar 

  171. Mendez-Rial R, Calvino-Cancela M, Martin-Herrero J. Anisotropic inpainting of the hypercube. IEEE Geosci Remote Sens Lett, 2011, 9: 214–218

    Article  Google Scholar 

  172. Addesso P, Mura M D, Condat L, et al. Hyperspectral image inpainting based on collaborative total variation. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Beijing, 2017. 4282–4286

  173. Lin C H, Liu Y. Blind hyperspectral inpainting via John Ellipsoid. In: Proceedings of the 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2021. 1–5

  174. Lin C H, Tang P W. Inverse problem transform: solving hyperspectral inpainting via deterministic compressed sensing. In: Proceedings of the 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2021. 1–5

  175. Wong R, Zhang Z, Wang Y, et al. HSI-IPNet: hyperspectral imagery inpainting by deep learning with adaptive spectral extraction. IEEE J Sel Top Appl Earth Observations Remote Sens, 2020, 13: 4369–4380

    Article  Google Scholar 

  176. Lin C H, Lin Y C, Tang P W, et al. Deep hyperspectral tensor completion just using small data. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Brussels, 2021. 2480–2483

  177. Zheng W J, Zhao X L, Zheng Y B, et al. Nonlocal patch-based fully connected tensor network decomposition for multispectral image inpainting. IEEE Geosci Remote Sens Lett, 2022, 19: 1–5

    Google Scholar 

  178. Yao D, Zhuang L, Gao L, et al. Hyperspectral image inpainting based on low-rank representation: a case study on Tiangong-1 data. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, 2017. 3409–3412

  179. Shang K, Li Y F, Huang Z H. Iterative p-shrinkage thresholding algorithm for low Tucker rank tensor recovery. Inf Sci, 2019, 482: 374–391

    Article  MathSciNet  Google Scholar 

  180. Ng M K P, Yuan Q, Yan L, et al. An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data. IEEE Trans Geosci Remote Sens, 2017, 55: 3367–3381

    Article  Google Scholar 

  181. Zhao X L, Wang F, Huang T Z, et al. Deblurring and sparse unmixing for hyperspectral images. IEEE Trans Geosci Remote Sens, 2013, 51: 4045–4058

    Article  Google Scholar 

  182. Špiclin Ž, Pernuš F, Likar B. Correction of axial optical aberrations in hyperspectral imaging systems. In: Proceedings of SPIE, 2011. 7891: 78910S

  183. Jia G R, Zhao H J, Li N. Simulation of hyperspectral scene with full adjacency effect. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Boston, 2008. 3: 724–727

  184. Henrot S, Soussen C, Dossot M, et al. Does deblurring improve geometrical hyperspectral unmixing?. IEEE Trans Image Process, 2014, 23: 1169–1180

    Article  MathSciNet  Google Scholar 

  185. Sada M M, Mahesh M G. Image deblurring techniques—a detail review. Int J Sci Res Sci Eng Technol, 2018, 4: 15

    Google Scholar 

  186. Fang H, Luo C, Zhou G, et al. Hyperspectral image deconvolution with a spectral-spatial total variation regularization. Canadian J Remote Sens, 2017, 43: 384–395

    Article  Google Scholar 

  187. Henrot S, Soussen C, Brie D. Fast positive deconvolution of hyperspectral images. IEEE Trans Image Process, 2012, 22: 828–833

    Article  MathSciNet  Google Scholar 

  188. Abdelkawy E E F, Mahmoud T A, Hussein W M. A new deblurring morphological filter for hyperspectral images. In: Proceedings of SPIE, 2011. 8048: 474–481

  189. Liao W, Goossens B, Aelterman J, et al. Hyperspectral image deblurring with PCA and total variation. In: Proceedings of 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, 2013. 1–4

  190. Berisha S, Nagy J G, Plemmons R J. Deblurring and sparse unmixing of hyperspectral images using multiple point spread functions. SIAM J Sci Comput, 2015, 37: S389–S406

    Article  MathSciNet  Google Scholar 

  191. Li D W, Lai L J, Huang H. Defocus hyperspectral image deblurring with adaptive reference image and scale map. J Comput Sci Technol, 2019, 34: 569–580

    Article  Google Scholar 

  192. Ljubenovic M, Traviglia A. Improved detection of buried archaeological sites by fast hyperspectral image deblurring and denoising. In: Proceedings of SPIE, 2021. 11784: 117840W

  193. Xie W, Jia X, Li Y, et al. Hyperspectral image super-resolution using deep feature matrix factorization. IEEE Trans Geosci Remote Sens, 2019, 57: 6055–6067

    Article  Google Scholar 

  194. Huang H, Christodoulou A G, Sun W. Super-resolution hyperspectral imaging with unknown blurring by low-rank and group-sparse modeling. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, 2014. 2155–2159

  195. Akgun T, Altunbasak Y, Mersereau R M. Super-resolution reconstruction of hyperspectral images. IEEE Trans Image Process, 2005, 14: 1860–1875

    Article  Google Scholar 

  196. Irmak H, Akar G B, Yuksel S E. A MAP-based approach for hyperspectral imagery super-resolution. IEEE Trans Image Process, 2018, 27: 2942–2951

    Article  MathSciNet  Google Scholar 

  197. Mianji F A, Gu Y, Zhang Y, et al. Enhanced self-training superresolution mapping technique for hyperspectral imagery. IEEE Geosci Remote Sens Lett, 2011, 8: 671–675

    Article  Google Scholar 

  198. Yuan Y, Zheng X, Lu X. Hyperspectral image superresolution by transfer learning. IEEE J Sel Top Appl Earth Observations Remote Sens, 2017, 10: 1963–1974

    Article  Google Scholar 

  199. Li J, Yuan Q, Shen H, et al. Hyperspectral image super-resolution by spectral mixture analysis and spatial-spectral group sparsity. IEEE Geosci Remote Sens Lett, 2016, 13: 1250–1254

    Article  Google Scholar 

  200. Xu X, Tong X, Li J, et al. Hyperspectral image super resolution reconstruction with a joint spectral-spatial sub-pixel mapping model. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Beijing, 2016. 6129–6132

  201. He S, Zhou H, Wang Y, et al. Super-resolution reconstruction of hyperspectral images via low rank tensor modeling and total variation regularization. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Beijing, 2016. 6962–6965

  202. Wang Y, Chen X, Han Z, et al. Hyperspectral image super-resolution via nonlocal low-rank tensor approximation and total variation regularization. Remote Sens, 2017, 9: 1286

    Article  Google Scholar 

  203. Arun P V, Buddhiraju K M, Porwal A, et al. CNN-based super-resolution of hyperspectral images. IEEE Trans Geosci Remote Sens, 2020, 58: 6106–6121

    Article  Google Scholar 

  204. Li J, Cui R, Li B, et al. Hyperspectral image super-resolution by band attention through adversarial learning. IEEE Trans Geosci Remote Sens, 2020, 58: 4304–4318

    Article  Google Scholar 

  205. Chen H, Zhang H, Du J, et al. Unified framework for the joint super-resolution and registration of multiangle multi/hyperspectral remote sensing images. IEEE J Sel Top Appl Earth Observations Remote Sens, 2020, 13: 2369–2384

    Article  Google Scholar 

  206. Li J, Liu X, Yuan Q, et al. Antinoise hyperspectral image fusion by mining tensor low-multilinear-rank and variational properties. IEEE Trans Geosci Remote Sens, 2019, 57: 7832–7848

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2021YFB3900502), China Postdoctoral Science Foundation (Grant No. 2021M700440), National Natural Science Foundation of China (Grant No. 61922013), and Beijing Natural Science Foundation (Grant No. L191004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Li, W., Wang, Y. et al. A survey on hyperspectral image restoration: from the view of low-rank tensor approximation. Sci. China Inf. Sci. 66, 140302 (2023). https://doi.org/10.1007/s11432-022-3609-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3609-4

Keywords

Navigation