Skip to main content
Log in

Impact of RF mismatches on the performance of massive MIMO systems with ZF precoding

射频失配对迫零预编码大规模MIMO系统性能的影响分析

  • Research Paper
  • Special Focus on 5G Wireless Communication Networks
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Thanks to the channel reciprocity, the time division duplex (TDD) operation is more preferred in massive multiple-input multiple-output (MIMO) systems. Avoiding the heavy feedback of downlink channel state information (CSI) from the user equipment (UE) to the base station (BS), the uplink CSI can be exploited for the downlink precoding. However, due to the mismatches of the radio frequency (RF) circuits at both sides of the link, the whole communication channels are usually not symmetric in practical systems. This paper is focused on the RF mismatches at the UEs and the BS for the multi-user massive MIMO systems with zero forcing (ZF) precoding. The closed-form expressions of the ergodic sum-rates are derived for evaluating the impact of RF mismatches on the system performance. Theoretical analysis and simulation results show that the RF mismatches at the UEs only lead to a negligible performance loss. However, it is imperative to perform reciprocity calibration at the BS, because the RF mismatches at the BS contribute to the inter-user interference (IUI) and result in a severe system performance degradation.

创新点

为了避免下行导频和用户反馈的开销 大规模MIMO系统利用TDD通信模式进行数据传输。这样根据上下行信道的互易性,基站可以利用上行信道信息来进行下行预编码的设计。然而收发两端射频电路增益的失配会破坏信道的互易性。基于迫零预编码,分别分析了基站端和用户端射频电路失配对系统性能的影响,得到可达和速率的闭式解。用户端的射频电路失配对系统性能的影响可以忽略,而基站端的射频电路失配会造成严重的用户间干扰,使得系统性能大大下降。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu H L. Performance comparison between distributed antenna and microcellular systems. IEEE J Sel Area Commun, 2011, 29: 1151–1163

    Article  Google Scholar 

  2. Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2013, 30: 40–60

    Article  Google Scholar 

  3. Erik L, Edfors O, Tufvesson F, et al. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 2014, 2: 186–195

    Google Scholar 

  4. Ma Z, Zhang Z, Ding Z, et al. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci China Inf Sci, 2015, 58: 041301

    Google Scholar 

  5. Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems—Part I: chunk allocation. IEEE Trans Wirel Commun, 2009, 57: 2734–2744

    Article  Google Scholar 

  6. Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems—Part II: joint chunk, power and bit allocation. IEEE Trans Wirel Commun, 2012, 60: 499–509

    Article  Google Scholar 

  7. Zhu H L. Radio resource allocation for OFDMA systems in high speed environments. IEEE J Sel Area Commun, 2012, 30: 748–759

    Article  Google Scholar 

  8. Huh H, Caire Giuseppe, Papadopoulos H C, et al. Achieving massive MIMO spectral efficiency with a not-so-large number of antennas. IEEE Trans Wirel Commun, 2011, 11: 3226–3239

    Article  Google Scholar 

  9. Smith G S. A direct derivation of a single-antenna reciprocity relation for the time domain. IEEE Trans Antenn Propag, 2004, 52: 1568–1577

    Article  Google Scholar 

  10. Hong Y, Marzetta T L. Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J Sel Area Commun, 2013, 31: 172–179

    Article  Google Scholar 

  11. Bourdoux A. Non-reciprocal transceivers in OFDM/SDMA systems: impact and mitigation. In: Proceedings of IEEE Radio and Wireless Conference (RAWCON 03), Boston, 2003. 183–186

    Google Scholar 

  12. Kaltenberger F. Relative channel reciprocity calibration in MIMO/TDD systems. In: Proceedings of IEEE Future Network and Mobile Summit, Florence, 2010. 1–10

    Google Scholar 

  13. Huang F, Wang Y F, Yang J, et al. Antenna mismatch and calibration problem in coordinated multi-point transmission system. IET Commun, 2012, 6: 289–299

    Article  MathSciNet  MATH  Google Scholar 

  14. Wei H. ICD reciprocity calibration for distributed large-scale MIMO systems with BD precoding. In: Proceedings of IEEE International Conference on Communications in China (ICCC), Shenzhen, 2015. 1–5

    Google Scholar 

  15. Huawei. Hardware calibration requirement for dual layer beamforming. In: 3GPP TSG RAN WG1 Meeting #57, R1-092359, Los Angeles, 2009. 1–10

    Google Scholar 

  16. Ericsson. On the need for UE calibration for enhanced downlink transmission. In: 3GPP TSG RAN WG1 Meeting #57, R1-092016, San Francisco, 2009. 1–4

    Google Scholar 

  17. Alcatel-Lucent. Channel reciprocity modeling and performance evaluation. In: 3GPP TSG RAN WG1 Meeting #59, R1-100426, Jeju, 2010. 1–10

    Google Scholar 

  18. Wang D M, Wang J Z, You X H, et al. Spectral efficiency of distributed MIMO systems. IEEE J Sel Area Commun, 2013, 31: 2112–2127

    Article  Google Scholar 

  19. Wang J Z, Zhu H L, Gomes N. Distributed antenna systems for mobile communications in high speed trains. IEEE J Sel Area Commun, 2012, 30: 675–683

    Article  Google Scholar 

  20. Geng J. Antenna gain mismatch calibration for cooperative base stations. In: Proceedings of IEEE Vehicular Technology Conference (VTC-Fall), San Francisco, 2011. 1–5

    Google Scholar 

  21. Maiwald D, Kraus D. Calculation of moments of complex wishart and complex inverse wishart distributed matrices. IEE Proc-Radar Sonar Navig, 2000, 147: 162–168

    Article  Google Scholar 

  22. Zhang Q T, Cui X W, Li X M. Very tight capacity bounds for MIMO-correlated rayleigh-fading channels. IEEE Trans Wirel Commun, 2005, 4: 681–688

    Article  Google Scholar 

  23. Xing C W, Ma S D, Zhou Y Q. Matrix-monotonic optimization for MIMO systems. IEEE Trans Signal Process, 2015, 63: 334–348

    Article  MathSciNet  Google Scholar 

  24. Shepard C. Argos: practical many-antenna base stations. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanbul, 2012. 53–64

    Google Scholar 

  25. Wei H, Wang D M, Zhu H L, et al. Mutual coupling calibration for multiuser massive MIMO systems. IEEE Trans Wirel Commun, 2015, doi: 10.1109/TWC.2015.2476467, in press. http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber =7239634

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Wang, D., Wang, J. et al. Impact of RF mismatches on the performance of massive MIMO systems with ZF precoding. Sci. China Inf. Sci. 59, 1–14 (2016). https://doi.org/10.1007/s11432-015-5509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5509-1

Keywords

Keywords

关键词

Navigation