Skip to main content
Log in

A low-power, area-efficient all-digital delay-locked loop for DDR3 SDRAM controller

适用于DDR3 SDRAM 的低功耗, 面积高效全数字延迟锁定环

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A new low-power, area efficiency all-digital delay-locked loop (ADDLL) circuit is proposed for DDR3 application. The ADDLL can process the input clock frequency ranging from 333 MHz to 800 MHz (DDR3-667/800/1066/1600) by using Phase Detector (PD), Delay Control Delay Line (DCDL), Digital Loop Filter Controller (DLFC) and Delay Generator (DG). To achieve 1.6 Gb/s/pin operation, a novel DCDL scheme is employed. The DCDL has a small delay with a shunt capacitor based digitally controlled delay element. A splitcontrol thermometer-code generator generates the control voltages used to set a current in the current-starved inverters. The testchip fabricated with a 40-nm CMOS process gives the ADDLL data rate of 667 Mbps-1.6 Gbps. Experimental results that show the power consumption is 1.87 mW at 1.1 V with active area is 0.0137 mm2.

概要

创新点

本文提出了一种适用于DDR3应用新的低功耗, 面积高效的全数字延迟锁定环电路. 全数字延迟锁相环通过使用相位检测器, 延迟控制延迟线, 数字环路滤波器控制器和延迟发生器, 可以处理的输入时钟频率范围从333 MHz 到800 MHz (DDR3-1600). 为了实现1.6 Gb/s/pin 的操作, 采用一种新型DCDL 方案. 该DCDL 具有以并联电容器为基础的数字控制的延迟元件, 所以延迟时间比较短. 一个分程控制温度计码发生器生成的控制电压, 用来设置一个在电流受控反相器的电流. 在40-nm CMOS 工艺制造的测试芯片给出667 Mbps-1.6 Gbps 的数据速率. 实验结果表明, 在1.1 V 操作电压下功耗为1.87 mW, 有效面积为0.0137 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim Y K, Jeon Y J, Jeong B H, et al. A 1.5 V, 1.6 Gb/s/pin, 1 Gb DDR3 SDRAM with an address queuing scheme and bang-bang jitter reduced DLL scheme. In: Proceedings of IEEE Symposium on VLSI Circuits, Kyoto, 2007. 182–183

    Google Scholar 

  2. Lee H W, Choi H, Shin B J, et al. A 1.0-ns/1.0-V delay-locked loop with racing mode and countered CAS latency controller for DRAM interfaces. IEEE J Solid State Circuits, 2012, 47: 1436–1447

    Article  Google Scholar 

  3. Lee J C, Jin S H, Kim D S, et al. A low-power small-area open loop digital DLL for 2.2 Gb/s/pin 2 Gb DDR3 SDRAM. In: Proceedings of IEEE Asian Solid State Circuits Conference, Jeju, 2011. 157–160

    Google Scholar 

  4. Kang H C, Ryu K H, Lee D H, et al. Process variation tolerant all-digital 90° phase shift DLL for DDR3 interface. IEEE Trans Circuits Syst I-Reg Pap, 2012, 59: 2186–2196

    Article  MathSciNet  Google Scholar 

  5. Moon Y S, Choi J S, Ho K, et al. An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance. IEEE J Solid State Circuits, 2000, 35: 377–384

    Article  Google Scholar 

  6. Sutoh H, Yamakoshi K, Ino M. Circuit technique for skew-free clock distribution. In: Proceedings of IEEE Custom Integrated Circuits Conference, Santa Clara, 1995. 163–166

    Google Scholar 

  7. Dehng G K, Hsu J M, Yang C Y, et al. Clock-deskew buffer using a SAR-controlled delay-locked loop. IEEE J Solid State Circuits, 2000, 35: 1128–1136

    Article  Google Scholar 

  8. Wang J S, Wang Y M, Cheng C Y, et al. An improved SAR controller for DLL applications. In: Proceedings of IEEE International Symposium on Circuits and Systems, Kos, 2006. 3898–3901

    Google Scholar 

  9. Olsson T, Nilsson P. A digitally controlled PLL for SoC applications. IEEE J Solid State Circuits, 2004, 39: 751–760

    Article  Google Scholar 

  10. Staszewski R B, Leipold D, Muhammand K, et al. Digitally controlled oscillator (DCO)-based architecture for RF frequency synthesis in a deep-submicrometer CMOS process. IEEE Trans Circuits Syst II-Analog Digit Signal Process, 2003, 50: 815–822

    Article  Google Scholar 

  11. Lin J, Haroun B, Foo T, et al. A PVT tolerant 0.18 MHz to 600 MHz self-calibrated digital PLL in 90 nm CMOS process. In: Digest of Technical Papers-IEEE International Solid-State Circuits Conference, San Francisco, 2004. 488–489

    Google Scholar 

  12. Raha P, Randall S, Jennings R, et al. A robust digital delay line architecture in a 0.13-μm CMOS technology node for reduced design and process sensitivities. In: Proceedings of International Symposium on Quality Electronic Design, San Jose, 2002. 148–153

    Chapter  Google Scholar 

  13. Chiang J S, Chen K Y. The design of an all-digital phase locked loop with small DCO hardware and fast phase lock. IEEE Trans Circuits Syst II-Analog Digit Signal Process, 1999, 46: 945–950

    Article  Google Scholar 

  14. Chen P L, Chung C C, Lee C Y. A portable digitally controlled oscillator using novel varactors. IEEE Trans Circuits Syst II-Express Briefs, 2005, 52: 233–237

    Article  Google Scholar 

  15. Kim Y S, Lee S K, Park H J, et al. A 110 MHz to 1.4 GHz locking 40-phase all-digital DLL. IEEE J Solid State Circuits, 2011, 46: 435–444

    Article  Google Scholar 

  16. Bae J H, Seo J H, Yeo H S, et al. An all-digital 90-degree phase-shift DLL with loop-embedded DCC for 1.6 Gbps DDR interface. In: Proceedings of IEEE Custom Integrated Circuits Conference, San Jose, 2007. 373–376

    Google Scholar 

  17. Zheng J, Li W, Lu X Q, et al. A low power and small area all digital delay-locked loop based on ring oscillator architecture. Sci China Inf Sci, 2012, 55: 453–460

    Article  Google Scholar 

  18. Jung D H, Ryu K H, Park J H, et al. A low-power and small-area all-digital delay-locked loop with closed-loop duty-cycle correction. In: Proceeding of the European Solid-State Circuits Conference, Bordeaux, 2012. 181–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongMing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Ma, S., Wang, L. et al. A low-power, area-efficient all-digital delay-locked loop for DDR3 SDRAM controller. Sci. China Inf. Sci. 57, 1–8 (2014). https://doi.org/10.1007/s11432-014-5226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5226-1

Keywords

关键词

Navigation