Skip to main content
Log in

Contour detection improved by frequency domain filtering of gradient image

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We propose an intermediate computational step, frequency domain filtering of gradient image, to improve contour detection performance of gradient-based edge detectors. This step is inspired by analyzing the spectrum distribution of object contours and texture edges in the frequency domain of gradient image. We illustrate the principle and effect of this step by adding it to the Canny edge detector. The resulting operator can selectively retain object contours and region boundaries, and meanwhile can dramatically reduce non-meaningful elements caused by textured background. We use several types of images to compare the proposed method and other related methods qualitatively and quantitatively. Experimental results show that the proposed method can effectively enhance the contour detection of Canny edge detector and achieves similar detection performance to two other related methods but runs faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ziou D, Tabbone S. Edge detection technique-An overview. Int J Pattern Recognit Image Anal, 1992, 8: 537–559

    Google Scholar 

  2. Nadernejad E. Edge detection techniques: evaluations and comparisons. Appl Math Sci, 2008, 2: 1507–1520

    MATH  MathSciNet  Google Scholar 

  3. Oskoei M A, Hu H S. A survey on edge detection methods. Technical Report: CES-506, University of Essex, 2010. 1–36

    Google Scholar 

  4. Lindeberg T. Edge detection and ridge detection with automatic scale selection. Int J Comput Vis, 1998, 30: 117–156

    Article  Google Scholar 

  5. Khashman A. Optimal scale edge detection utilizing noise within images. J Syst Cybern Inform, 2003, 1: 46–50

    Google Scholar 

  6. Koren R, Yitzhaky Y. Automatic selection of edge detector parameters based on spatial and statistical measures. Comput Vis Image Underst, 2006, 102: 204–213

    Article  Google Scholar 

  7. Liang K H, Tjahjadi T, Yang Y H. Bounded diffusion for multi-scale edge detection using regularized cubic B-spline fitting. IEEE Trans Syst Man Cybern, 1999, 29: 291–297

    Article  Google Scholar 

  8. Joshi G D, Sivaswamy J. Multi-scale spproach to salient contour extraction. In: Proceedings of the International Conference on Cognition and Recognition (ICCR05), Mysore, 2005. 186–193

    Google Scholar 

  9. Tremblais B, Augereau B. A fast multi-scale edge detection algorithm. Pattern Recognit Lett, 2004, 25: 603–618

    Article  Google Scholar 

  10. Jiang B, Rahman Z. Multi-scale edge detection with local noise estimate. In: Proceedins of SPIE, Vol 7798, San Diego, 2010. 779805: 1–12

    Google Scholar 

  11. Medina-Carnicer R, Madrid-Cuevas F J. Unimodal thresholding for edge detection. Pattern Recognit, 2008, 41: 2337–2346

    Article  MATH  Google Scholar 

  12. Medina-Carnicer R, Madrid-Cuevas F J, Carmona-Poyato A, et al. On candidates selection for hysteresis thresholds in edge detection. Pattern Recognit, 2009, 42: 1284–1296

    Article  MATH  Google Scholar 

  13. Sen D, Pal S K. Gradient histogram: Thresholding in a region of interest for edge detection. Image Vis Comput, 2009, 28: 677–695

    Article  Google Scholar 

  14. Medina-Carnicer R, Muñoz-Salinas R, Yeguas-Bolivar E, et al. A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recognit, 2011, 44: 1201–1211

    Article  Google Scholar 

  15. Grigorescu C, Petcov N, Westenberg M A. Contour and boundary detection improved by surround suppression of texture edges. Image Vis Comput, 2004, 22: 609–622

    Article  Google Scholar 

  16. Qu Z G, Wang P, Gao Y H, et al. Contour detection based on SUSAN principle and surround suppression. In: Proceedings of IEEE 17th International Conference on Image Processing (ICIP 2010), Hong Kong, 2010. 1937–1940

    Chapter  Google Scholar 

  17. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, 1986, 8: 679–698

    Article  Google Scholar 

  18. Nothdurft H C, Gallant J, van Essen D C. Response modulation by texture surround in primate area V1: Correlates of ‘pop-out’ under anesthesia. Visual Neurosci, 1999, 16: 15–34

    Article  Google Scholar 

  19. Smith S, Brady J. SUSAN—a new approach to low-level image processing. Int J Comput Vis, 1997, 23: 45–78

    Article  Google Scholar 

  20. Gonzalez R C, Woods R E. Digital Image Processing. 2nd ed. Beijing: Publishing House of Electronics Industry, 2003

    Google Scholar 

  21. Heath M, Sarkar S, Sanocki T, et al. A robust visual method for assessing the relative performance of edge detection algorithms. IEEE Trans Pattern Anal Mach Intell, 1997, 19: 1338–1359

    Article  Google Scholar 

  22. Papari G, Campisi P, Petkov N, et al. A biologically motivated multi-resolution approach to contour detection. EURASIP J Adv Signal Process, 2007, 071828: 1–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGuo Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Z., Gao, Y., Wang, P. et al. Contour detection improved by frequency domain filtering of gradient image. Sci. China Inf. Sci. 57, 1–11 (2014). https://doi.org/10.1007/s11432-012-4688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4688-2

Keywords

Navigation