Skip to main content
Log in

Syntax theory of finite lattice-valued propositional logic

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we establish the graded syntax theory of lattice-valued propositional logic based on finite lattice implication algebras, define the notions of syntactic consequence operation and formal proof, and develop a kind of graded finite lattice-valued propositional calculus. By generalizing classic provable equivalence relation, we present a kind of generalized provable equivalence relation, and establish the corresponding quotient algebra. Finally, we establish the generalized deduction theorem by syntactic consequence operation, and establish the completeness in Pavelka’s sense based on finite chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tarski A. Remarques sur les notions fondamentales de la méthodologie des mathématiques. Ann Soc Pol Math, 1928, 6: 270–271

    Google Scholar 

  2. Tarski A. O pojciu wynikania logicznego. Przeg Foloz, 1936, 39: 58–68

    Google Scholar 

  3. Tarski A. Logic, Semantics, Metamathematics. 2nd ed. USA: Hackett Pulishing Company Inc., 1983

    Google Scholar 

  4. Pavelka J. On fuzzy logic(I, II, III). Z fur Math Logic Grundl Math, 1979, 25: 45–52, 119–134, 447–464

    Article  MathSciNet  MATH  Google Scholar 

  5. Novák V, Perfilieva I, Močkoř J. Mathematical Principles of Fuzzy Logic. USA: Kluwer Academic Publishers, 1999

    Book  MATH  Google Scholar 

  6. Novák V. Which logic is the real fuzzy logic? Fuzzy Set Syst, 2006, 157: 635–641

    Article  MATH  Google Scholar 

  7. Marks-II R J. Fuzzy Logic Technology and Applications. IEEE Technological Activities Board, 1994

    Google Scholar 

  8. Esteva F, Godo L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Set Syst, 2001, 123: 271–288

    Article  MathSciNet  Google Scholar 

  9. Esteva F, Godo L, Noguera C. On expansions of WNM t-norm based logics with truth-constants. Fuzzy Set Syst, 2010, 161: 347–368

    Article  MathSciNet  MATH  Google Scholar 

  10. Mundici D, Cignoli R, D’Ottaviano I M L. Algebraic Foundations of Many-Valued Reasoning. Dordrecht: Kluwer Academic Publishers, 2000

    MATH  Google Scholar 

  11. Gottwald S. A Treatise on Many-Valued Logics. Baldock: Research Studies Press Ltd., 2001

    MATH  Google Scholar 

  12. Hájek P. Metamathematics of Fuzzy Logic, Trends in Logic. Dordercht: Kluwer Academic Publishers, 1998. Vol 4

    Book  Google Scholar 

  13. Cintula P, Hájek P. Triangular norm based predicate fuzzy logics. Fuzzy Set Syst, 2010, 161: 311–346

    Article  MATH  Google Scholar 

  14. Esteva F, Godo L, Noguera C. First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties. Ann Pure Appl Logic, 2009, 161: 185–202

    Article  MathSciNet  MATH  Google Scholar 

  15. Novák V. First-order fuzzy logic. Stud Logic, 1982, 46: 87–109

    Article  Google Scholar 

  16. Novák V. On fuzzy type theory. Fuzzy Set Syst, 2005, 149: 235–273

    Article  MATH  Google Scholar 

  17. Novák V. Fuzzy logic with countable evaluated syntax revisited. Fuzzy Set Syst, 2007, 158: 929–936

    Article  MATH  Google Scholar 

  18. Turunen E. Mathematics Behind Fuzzy Logic. Berlin: Springer, 1999

    MATH  Google Scholar 

  19. Xu Y, Ruan D, Qin K Y, et al. Lattice-Valued Logic-an Alternative Approach to Treat Fuzziness and Incomparability. Berlin/Heidelberg/New York: Springer-Verlag Press, 2003

    Book  MATH  Google Scholar 

  20. Xu Y, Liu J, Ruan D, et al. Determination of α-resolution in lattice-valued first-order logic LF(X). Inform Sciences, 2011, 181: 1836–1862

    Article  MathSciNet  MATH  Google Scholar 

  21. Ying M S. Deduction theorem for many-valued inference. Z Math Logik Grundl Math, 1991, 37: 533–537

    Article  MATH  Google Scholar 

  22. Ying M S. The fundamental theorem of ultraproduct in Pavelkas logic. Z Math Logik Grundl Math, 1992, 38: 197–201

    Article  MATH  Google Scholar 

  23. Pan X D, Xu Y. Semantic theory of finite lattice-valued propositional logic. Sci China Inf Sci, 2010, 53: 2022–2031

    Article  MathSciNet  Google Scholar 

  24. Pan X D, Xu Y, Zhang Q. Lattice implication algebraic equations in lattice implication algebras (in Chinese). J Southwest Jiaotong Univ, 2005, 40: 842–845

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoDong Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, X., Meng, D. & Xu, Y. Syntax theory of finite lattice-valued propositional logic. Sci. China Inf. Sci. 56, 1–12 (2013). https://doi.org/10.1007/s11432-012-4580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4580-0

Keywords

Navigation