Skip to main content
Log in

An improved method for progressive animation models generation

  • Research Papers
  • Special Focus
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In computer graphics, animated models are widely used to represent time-varying data. And the progressive representation of such models can accelerate the speed of processing, transmission and storage. In this paper, we propose an efficient method to generate progressive animation models. Our method uses an improved curvature sensitive quadric error metric (QEM) criterion as basic measurement, which can preserve more local features on the surface. We append a deformation weight to the aggregated edge contraction cost during the whole animation to preserve more motion features. At last, we introduce a mesh optimization method for the animation sequence, which can efficiently improve the temporal coherence and reduce visual artifacts between adjacent frames. The results show our approach is efficient, easy to implement, and good quality progressive animation models can be generated at any level of detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen J, Varshney A, Manocha D, et al. Simplification envelopes. In: ACM SIGGRAPH 1996 Conference Proceedings, New Orleans, LA, 1996. 119–128

  2. Schroeder W J, Zarge J A, Lorensen W E. Decimation of triangle meshes. In: ACM SIGGRAPH 1992 Conference Proceedings, Chicago, 1992. 65–70

  3. Low K L, Tan T S. Model simplification using Vertex-Clustering. In: ACM Symposium on Interactive 3D Graphics, New York, 1997. 75–82

  4. Garland M, Willmott A, Heckbert P S. Hierarchical face clustering on polygonal surfaces. In: Proc ACM Symp Interactive 3D Graphics, New York, 2001. 49–58

  5. Lee A, Moreton H, Hoppe H. Displaced subdivision surfaces. In: ACM SIGGRAPH 2000 Conference Proceedings, New York, 2000. 85–94

  6. Garland M, Heckbert P S. Surface simplification using quadric error metrics. ACM SIGGRAPH 1997 Conference Proceedings, New York, 1997. 209–216

  7. Guéziec A. Locally toleranced surface simplification. IEEE Trans Visual Comput Graph, 1999, 5: 168–189

    Article  Google Scholar 

  8. Hoppe H. Progressive meshes. In: ACM SIGGRAPH 1996 Conference Proceedings, New Orleans, 1996. 99–108

  9. Lee C H, Varshney A, David J. Mesh saliency. In: Proceedings of ACM SIGGRAPH, Los Angeles, 2005. 659–666

  10. Yan J, Shi P, Zhang D. Mesh simplification with hierarchical shape analysis and iterative edge contraction. IEEE Trans Visual Comput Graph, 2004, 10: 142–151

    Article  Google Scholar 

  11. Garland M. Multiresolution modeling: survey & future opportunities. In: Proceedings of Eurographic, Milano. 1999. 49–65

  12. Luebke D, Reddy M, Cohen J. Level of Detail for 3-D Graphics. San Frausisco, CA: Morgan Kaufmann, 2002

    Google Scholar 

  13. Oliver M van K, Hélio P. A comparative evaluation of metrics for fast mesh simplification. Comput Graph Forum, 2006, 25: 197–210

    Article  Google Scholar 

  14. Xia J C, Varshney A. Dynamic view-dependent simplification for polygonal models. In: IEEE Visualization 1996 Conference Proceedings, Los Alamitos, CA, 1996. 327–334

  15. Hoppe H, DeRose T, Dunchamp T, et al. Mesh optimization. In: ACM SIGGRAPH 1993 Conference Proceedings, Anaheim, CA, 1993. 19–25

  16. Garimella R, Shashkov M. Polygonal surface mesh optimization. Eng Comput, 2004, 20: 265–272

    Article  Google Scholar 

  17. de Goes F, Bergo F P G, Falcao A X, et al. Adapted dynamic meshes for deformable surfaces. In: Brazilian Symposium on Computer Graphics and Image Processing, Manaus, Amazona, Brazil, 2006. 213–220

  18. Liu L, Tai C, Ji Z, et al. Non-iterative approach for global mesh optimization. Comput Aided Design, 2007, 39: 772–782

    Article  Google Scholar 

  19. Shamir A, Bajaj C, Pascucci V. Multiresolution dynamic meshes with arbitrary deformations. In: IEEE Visualization 2000 Conference Proceedings, Salt Lake City, Utah, 2000. 423–430

  20. Shamir A, Pascucci V. Temporal and spatial level of details for dynamic meshes. In: Proceedings of ACM Symposium on Virtual Reality Software and Technology, Banff, Alberta, Canada, 2001. 77–84

  21. Mohr A, Gleicher M. Deformation sensitive decimation. Technical Report, University of Wisconsin, 2003

  22. Chen B Y, Cho S Y, Johan H, et al. Progressive 3D animated models for mobile & web uses. The J Society Art Sci, 2005, 4: 145–150

    Article  Google Scholar 

  23. Kircher S, Garland M. Progressive multiresolution meshes for deforming surfaces. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New York, 2005. 191–200

  24. Payan F, Hahmann S, Bonneau G P. Deforming surface simplification based on dynamic geometry sampling. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, Lyon, France, 2007. 71–80

  25. Tseng J L. Progressive compression and surface analysis for 3D animation objects using temporal discrete shape operator. In: International Conference on Information, Communications & Signal Processing, Singapore, 2007. 1–5

  26. Huang F C, Chen B Y, Chuang Y Y. Progressive deforming meshes based on deformation oriented decimation and dynamic connectivity updating. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Vienna, Austria, 2006. 53–62

  27. Zhang S, Wu E. A shape feature based simplification method for deforming meshes. Geomet Model Process, 2008, 4975: 548–555

    Article  Google Scholar 

  28. Landreneau E, Schaefer S. Simplification of articulated meshes. In: Proceedings of EUROGRAPHICS, Munich, Germany, 2009

  29. Merry B, Marais P, Gain J. Analytic simplification of animated characters. In: International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa (Afrigraph 2009), Pretoria, South Africa, 2009. 37–45

  30. Floater M S. Mean value coordinates. Comput Aid Geometr Design, 2003, 20: 19–27

    Article  MATH  MathSciNet  Google Scholar 

  31. Sumner R W, Popovic J. Deformation transfer for triangle meshes. In: ACM SIGGRAPH 2004 Conference Proceedings, Los Angeles, 2004. 399–405

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiXue Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Zhao, J. & Wu, E. An improved method for progressive animation models generation. Sci. China Inf. Sci. 53, 1312–1321 (2010). https://doi.org/10.1007/s11432-010-4007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4007-8

Keywords

Navigation