Skip to main content
Log in

Robust adaptive cross-coupling position control of biaxial motion system

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system. Based on analyzing the characteristics of the cross-coupling control system, a robust adaptive cross-coupling control strategy is proposed. To restrict influences of destabilizing factors and improve both of stability and synchronous performance, the strategy forces dual axes to track the same reference model using Narendra adaptive control theory. And then, a robust parameters adaptive law is proposed. The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory. Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun D, Shao X Y, Feng G. A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments. IEEE T Contr Syst T, 2007, 15: 306–314

    Article  Google Scholar 

  2. Su K H, Cheng M Y. Contouring accuracy improvement using cross-coupled control and position error compensator. Int J Mach Tool Manu, 2008, 48: 1444–1453

    Article  Google Scholar 

  3. Yeh S S, Hus P L. Analysis and design of integrated control for multi-axis motion systems. IEEE T Contr Syst T, 2003, 11: 375–382

    Article  Google Scholar 

  4. Chen C S, Chen L Y. Robust cross-coupling synchronous control by shaping position commands in multiaxes system. IEEE T Ind Electron, 2008, 59: 4761–4773

    Article  Google Scholar 

  5. Tomizuka M. Zero phase error tracking algorithm for digital control. ASME T J Dyn Syst Meas Contr, 1987, 109: 65–68

    Article  MATH  Google Scholar 

  6. Lee H S, Tomizuka M. Robust motion controller design for highaccuracy positioning systems. IEEE T Ind Electron, 1996, 43: 48–55

    Article  Google Scholar 

  7. Kempf C J, Kobayashi S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE T Contr Syst T, 1999, 7: 513–526

    Article  Google Scholar 

  8. Song Q Z, Yang Z C, Wang W. Robust control of exciting force for vibration control system with multi-exciters. Sci China Tech Sci, 2013, 56: 2516–2524

    Article  Google Scholar 

  9. Wang P, Tang G J, Liu L H, et al. Nonlinear hierarchy-structured predictive control design for a generic hypersonic vehicle. Sci China Tech Sci, 2013, 56: 2025–2036

    Article  Google Scholar 

  10. Zhang Z, Mao J Q, Zhou K M. Experimental characterization and modeling of stress-dependent hysteresis of a giant magnetostrictive actuator. Sci China Tech Sci, 2013, 56: 656–665

    Article  Google Scholar 

  11. Yeh S S, Hsu P L. Estimation of the contouring error vector for the cross-coupled control design. IEEE ASME T Mech, 2002, 7: 44–51

    Article  Google Scholar 

  12. Zhao H, Zhu L M, Ding H. Cross-coupled controller design for triaxial motion systems based on second-order contour error estimation. Sci China Tech Sci, 2015, 58: 1209–1217

    Google Scholar 

  13. Koren Y. Cross-coupled biaxial computer for manufacturing systems. ASME J Dyn Syst Meas Con, 1980, 102: 265–272

    Article  MATH  Google Scholar 

  14. Chen C S, Chen L Y. Cross-coupling position command shaping control in a multi-axis motion system. Mechatronics, 2011, 21: 625–632

    Article  Google Scholar 

  15. Cheng M H, Li Y J, Bakhoum E G. Controller synthesis of tracking and synchronization for multiaxis motion system. IEEE T Contr Syst T, 2014, 22: 378–386

    Article  Google Scholar 

  16. Lin F J, Shieh H J, Chou P H. Tracking control of a two-axis motion system via a filtering-type sliding-mode control with radial basis function network. IET Contr Theor A, 2010, 4: 655–671

    Article  MathSciNet  Google Scholar 

  17. Barton K L, Alleyne A G. A cross-coupled iterative learning control design for precision motion control. IEEE T Contr Syst T, 2008, 16: 1218–1231

    Article  Google Scholar 

  18. Tang L, Landers R G. Predictive contour control with adaptive feed rate. IEEE ASME T Mech, 2012, 17: 669–679

    Article  Google Scholar 

  19. Lin F J, Shieh P H, Chou P H. Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network. IEEE T Fuzzy Syst, 2008, 16: 676–692

    Article  Google Scholar 

  20. Naredra K S, Valavani L S. Stable adaptive controller design-direct control. IEEE T Automat Contr, 1978, 23: 570–583

    Article  MATH  Google Scholar 

  21. Chen Z X, Lu Z G, Hu L K, et al. Nonlinear σ-modification composite model reference adaptive control for drum-type boiler-turbine system. P Chin Soc Electrical Eng, 2013, 33: 87–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, D., Geng, Q. et al. Robust adaptive cross-coupling position control of biaxial motion system. Sci. China Technol. Sci. 59, 680–688 (2016). https://doi.org/10.1007/s11431-015-5988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5988-8

Keywords

Navigation