Skip to main content
Log in

Functional characteristics of dragonfly wings and its bionic investigation progress

  • Progress of Projects Supported by NSFC
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Dragonfly is one of the most excellent nature flyers, and its wings exhibit excellent functional characteristics through the coupling and synergy of morphology, configuration, structure and material. The functional characteristics presented by dragonfly wings provide an biological inspiration for the investigation and development of aerospace vehicles and bionics flapping aerocraft flapping-wing micro air vehicles. In resent years, some progresses have been achieved in the researches on the wings’ geometric structure, material characteristics, flying mechanism and the controlling mode. In this paper, the functional characteristics of the dragonfly wings including flying, self-cleaning, anti-fatigue, vibration elimination and noise reduction are introduced and the effects of their morphology, configuration, structure and material on the functional characteristics are described. Moreover, the current state of the bionic study on the functional characteristics of dragonfly wings is analyzed and its application prospect is depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ren L Q, Liang Y H. Biological couplings: Function, characteristics and implementation mode. Sci China Tech Sci, 2010, 53: 379–387

    Article  Google Scholar 

  2. Taheri A, Orangi S. A novel miniature virus-inspired swimming robot for biomedical applications. Sci China Tech Sci, 2010, 53: 2883–2895

    Article  MATH  Google Scholar 

  3. Tian X M, Han Z W, Li X J, et al. Biological coupling anti-wear properties of three typical molluscan shells—Scapharca subcrenata, Rapana venosa and Acanthochiton rubrolineatus. Sci China Tech Sci, 2010, 53: 2905–2913

    Article  Google Scholar 

  4. Hu Y, Han Z W, Xu M X, et al. Anti-wear properties on 20CrMnTi steel surfaces with biomimetic non-smooth units. Sci China Tech Sci, 2010, 53: 2920–2924

    Article  Google Scholar 

  5. Zhou C, Cao Z Q, Wang S, et al. A marsupial robotic fish team: Design, motion and cooperation. Sci China Tech Sci, 2010, 53: 2896–2904

    Article  MATH  Google Scholar 

  6. Wang H, Sheng K C, Chen J, et al. Mechanical and thermal properties of sodium silicate treated moso bamboo particles reinforced PVC composites. Sci China Tech Sci, 2010, 53: 2932–2935

    Article  Google Scholar 

  7. Zhou H, Hu T J, Xie H B, et al. Computational and experimental study on dynamic behavior of underwater robots propelled by bionic undulating fins. Sci China Tech Sci, 2010, 53: 2966–2971

    Article  MATH  Google Scholar 

  8. Chirende B, Li J Q, Wen L G, et al. Effects of bionic non-smooth surface on reducing soil resistance to disc ploughing. Sci China Tech Sci, 2010, 53: 2960–2965

    Article  Google Scholar 

  9. Zhang X, Zhang S J, Hapeshi K. A new method for face detection in colour images for emotional bio-robots. Sci China Tech Sci, 2010, 53: 2983–2988

    Article  Google Scholar 

  10. Wang C F, Tong J, Sun J Y. Kinematics of Chinese toad Bufo gargarizans. Sci China Tech Sci, 2010, 53: 2936–2941

    Article  Google Scholar 

  11. Machida K, Shimanuki J. Structure analysis of the wing of a dragonfly. Proc of SPIE Third Intl Conf on Experimental Mechanics and Third Conf of the Asian Committee on Experimental Mechanics. Bellingham: WA, 2005, 5852: 671–676

    Google Scholar 

  12. Alexander D E. Unusual phase relationships between the forewings and hindwings in flying dragonflies. J Exp Biol, 1984, 109(1): 379–383

    Google Scholar 

  13. Olberg R M, Worthington A H, Venator K R. Prey pursuit and interception in dragonflies. J Compar Physiol A, 2000, 186(2): 155–162

    Article  Google Scholar 

  14. Kesel A B, Philippi U, Nachtigall W. Biomechanical aspects of the insect wing: An analysis using the finite element method. Comp Biol Med, 1998, 28(4): 423–437

    Article  Google Scholar 

  15. Wakeling J M, Ellington C P. Dragonfly flight III. Lift and power requirements. J Exp Biol, 1997, 200: 583–600

    Google Scholar 

  16. Newman D J, Wootton R J. An approach to the mechanics of pleating in dragonfly wings. J Exp Biol, 1986, 126(1): 361–372

    Google Scholar 

  17. Chen J S, Chen J Y, Chou Y F. On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vibr, 2008, 313: 643–654

    Article  Google Scholar 

  18. Sudo S, Tsuyuki K, Tani J. Wing morphology of some insects. JSME Int J Ser C, 2000, 43(4):895–900

    Article  Google Scholar 

  19. Rajabi H, Moghadami M, Darvizeh A. Investigation of microstructure, natural frequencies and vibration modes of dragonfly Wing. J Bionic Eng, 2011, 8: 165–173

    Article  Google Scholar 

  20. Elarbi E M, Qin N. Effects of pitching rotation on aerodynamics of tandem flapping wing sections of a hovering dragonfly. Aeronaut J, 2010, 114(1161): 699–710

    Google Scholar 

  21. Hsieh C T, Kung C F, Chang C C, et al. Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition. J Fluid Mech, 2010, 663: 233–252

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen Y H, Zhao Y, Huang W M, et al. Kinematics of dragonfly (sympetrum flaveolum) flight. In: 6TH World Congress of Biomechanics (WCB). 2010, 31: 56–59

    Google Scholar 

  23. Wan Y L, Cong Q, Jin J F, et al. Microstructure and wettability of dragonfly wings. J Jilin Univ (Engineering and Technology Edition), 2009, 39(3): 732–736

    Google Scholar 

  24. Wan Y L, Cong Q, Wang X J, et al. The wettability and mechanism of geometric non-smooth structure of dragonfly wing surface. J Bionic Eng, 2008, 5: 40–45

    Article  Google Scholar 

  25. Wan Y L, Cong Q, Wang X J. Coupling mechanism of hydrophobicity of dragonfly wing surface. Trans Chin Soc Agric Mach, 2009, 40(9): 205–208

    Google Scholar 

  26. Zhang Z H, Zhou H, Ren L Q, et al. Effect of units in different sizes on thermal fatigue behavior of 3Cr2W8V die steel with biomimetic non-smooth surface. Int J Fatigue, 2009, 31: 468–475

    Article  Google Scholar 

  27. Tong X, Zhou H, Zhang Z H, et al. Effects of surface shape on thermal fatigue resistance of biomimetic non-smooth cast iron. Mater Sci Eng A, 2007, 467: 97–103

    Article  Google Scholar 

  28. Zhang Z H, Ren L Q, Zhou H, et al. Biomimetic coupling effect of non-smooth mechanical property and microstructural features on thermal fatigue behavior of medium carbon steel. Chin Sci Bull, 2009, 54(4): 584–591

    Article  Google Scholar 

  29. Tong X, Zhou H, Chen L, et al. Effects of C content on the thermal fatigue resistance of cast iron with biomimetic non-smooth surface. Int J Fatigue, 2008, 30: 1125–1133

    Article  Google Scholar 

  30. Tong X, Zhou H, Ren L Q, et al. Effects of graphite shape on thermal fatigue resistance of cast iron with biomimetic non-smooth surface. Int J Fatigue, 2009, 31: 668–677

    Article  Google Scholar 

  31. Zhang Z H, Zhou H, Ren L Q, et al. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters. Appl Surf Sci, 2008, 254: 2548–2555

    Article  Google Scholar 

  32. Ren L Q, Liang Y H. Biological couplings: Classification and characteristic rules. Sci China Ser E-Tech Sci, 2009, 52(10): 2791–2800

    Article  Google Scholar 

  33. Ren L Q, Liang Y H. Coupling Bionics. Beijing: Science Press, 2012

    Google Scholar 

  34. Wakeling J M, Ellington C P. Dragonfly flight II. Velocities, accelerations and kinematics of flapping flight. J Exp Biol, 1997, 200: 557–582

    Google Scholar 

  35. Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol, 1973, 59: 169–230

    Google Scholar 

  36. Thomas A L R, Taylor G K, Srygley R B, et al. Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J Exp Biol, 2004, 207: 4299–4323

    Article  Google Scholar 

  37. Rüppell G. Kinematic analysis of symmetrical flight manoeuvers of odonata. J Exp Biol, 1989, 144: 13–42

    Google Scholar 

  38. Zhou C Y, Lin Y F. Effect of the interaction between fore-and hind-wings on lift generation. J Harbin Inst Technol, 2007, 39(4): 642–646

    Google Scholar 

  39. Zhang Y L, Zhao C X, Xu J L, et al. Effect of flapping wing contrail on aerodynamics. Chin Sci Bull, 2006, 6(51): 634–640

    Google Scholar 

  40. Norberg R A. Hovering flight of the dragonfly Aeschna Juncea L, kinematics and aerodynamics. Swimming and Flying in Nature. New York: Plenum Press, 1975, 2. 763–781

    Article  Google Scholar 

  41. Karl G. Biological dynamical subsystems of hovering flight. Math Comput Simulat, 1996, 40: 397–410

    Article  Google Scholar 

  42. Azuma A, Azuma S, Watanabe I, et al. Flight mechanics of a dragonfly. J Exp Biol, 1985, 116: 79–107

    Google Scholar 

  43. Sun M. High-lift generation and power requirements of insect flight. Fluid Dyn Res, 2005, 37: 21–39

    Article  MATH  Google Scholar 

  44. Vargas A, Mittal R, Dong H. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinsp Biomim, 2008, 3: 026004

    Article  Google Scholar 

  45. Wakeling J M, Ellington C P. Dragonfly flight I. Gliding flight and steady-state aerodynamic forces. J Exp Biol, 1997, 200: 543–556

    Google Scholar 

  46. Hankin M A. Structure, Form, Movement. NowYork: Reinhold, 1921

    Google Scholar 

  47. Sanjay P S. The aerodynamics of insect flight. J Exp Biol, 2003, 206: 4191–4208

    Article  Google Scholar 

  48. Somps C, Luttges M. Dragonfly flight: Novel uses of unsteady separation flows. Science, 1985, 28: 1326–1328

    Article  Google Scholar 

  49. Saharon D, Luttges M. Visualization of unsteady separated flow produces by mechanically driven dragonfly wing kinematics model. AIAA, 1988, 88: 1–23

    Google Scholar 

  50. Wan Y L. Dynamics and fatigue life of three-dimensional structure of dragonfly wings. Dissertation for Doctor Degree. Jilin: Jilin Universiy, 2010

    Google Scholar 

  51. Wan Y L, Cong Q, Li S K. Self-cleaning character and dynamic analysis of drayonfly wing. J Jilin Univ (Engineering and Technology Edition), 2010, 40(5): 1283–1287

    Google Scholar 

  52. Yin C J. Flutter of Aerial Craft. Beijing: Atomic Energy Press, 2007

    Google Scholar 

  53. Jongerius S R, Lentink D. Structural analysis of a dragonfly wing. Exp Mech, 2010, 50: 1323–1334

    Article  Google Scholar 

  54. Wootton R J. Functional morphology of insect wings. Annu Rev Entomol, 1992, 37: 113–140

    Article  Google Scholar 

  55. Sudo S, Tsuyuki K, Ikohagi T, et al. A study on the wing structure and flapping behavior of a dragonfly. JSME Int J, 1999, 42: 721–729

    Article  Google Scholar 

  56. Kreuz P, Arnold W, Kesel A B. Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface. Ann Biomed Eng, 2001, 29: 1054–1058

    Article  Google Scholar 

  57. Chen Y L, Wang X H, Ren H H, et al. Hierarchical dragonfly wing: Microstructure-biomechanical behavior relations. J Bionic Eng, 2012, 9: 185–191

    Article  Google Scholar 

  58. Newman D J S. The functional wing morphology of some odonata. Dissertation for Doctor Degree. Exeter, Devon, UK: University of Exeter, 1982

    Google Scholar 

  59. Donoughe S, Crall J D, Merz R A, et al. Resilin in dragonfly and damselfly wings and its implications for wing flexibility. J Mor, 2011, 272: 1409–1421

    Article  Google Scholar 

  60. Appel E, Gorb S N. Resilin-bearing wing vein joints in the dragonfly Epiophlebia superstes. Bioinspir Biomimet, 2011, 6(4): 046006 (11pp)

    Article  Google Scholar 

  61. Wootton R J, Kukaiova-Peek J, Newman D J, et al. Smart engineering in the mid-carboniferous: How well could Palaeozoic dragonflies fly? Science, 1998, 282: 749–751

    Article  Google Scholar 

  62. Okamoto M, Yasuda K, Azuma A. Aerodynamic characteristics of the wings and body of a dragonfly. J Exp Biol, 1996, 199: 281–294

    Google Scholar 

  63. Chen Y L, Wang X S, Ren H H, et al. An organic junction between the vein and membrane of the dragonfly wing. Chin Sci Bull, 2011, 56: 1658–1660

    Article  Google Scholar 

  64. Park H, Choi H. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Bioinspir Biomim, 2012, 7: 016008

    Article  Google Scholar 

  65. Ren H H, Wang X S, Chen Y L, et al. Biomechanical behaviors of dragonfly wing: Relationship between configuration and deformation. Chin Phys B, 2012, 21(3): 034501

    Article  Google Scholar 

  66. Koehler C, Liang Z X, Gaston Z, et al. 3D reconstruction and analysis of wing deformation in free-flying dragonflies. J Exp Biol, 2012, 215: 3018–3027

    Article  Google Scholar 

  67. Sun J Y, Bhushan B. The structure and mechanical properties of dragonfly wings and their role on flyability. C R Mec, 2012, 340(1–2): 3–17

    Article  Google Scholar 

  68. Combes S A, Daniel T L. Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J Exp Biol, 2003, 206: 2979–2987

    Article  Google Scholar 

  69. Combes S A, Daniel T L. Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J Exp Biol, 2003, 206: 2989–2997

    Article  Google Scholar 

  70. Sunada S, Zeng L J, Kawachi K. The relationship between dragonfly wing structure and torsional deformation. J Theor Biol, 1998, 193: 39–45

    Article  Google Scholar 

  71. Song F, Xiao K W, Bai K, et al. Microstructure and nanomechanical properties of the wing membrane of dragonfly. Mater Sci Eng, 2007, 457: 254–260

    Article  Google Scholar 

  72. Gorb S N, Kesel A, Berger J. Microsculpture of the wing surface in odonata: evidence for cuticular wax covering. Arthropod Struct Dev, 2000, 29: 129–135

    Article  Google Scholar 

  73. Goh S. http://tech.huanqiu.com/digit/camera/focus/2011-12/2298767.html

  74. Wang X S, Li Y, Shi Y F. Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein. Compos Sci Technol, 2008, 68: 186–192

    Article  Google Scholar 

  75. Zhao H X, Yin Y J, Zhong Z. Assembly modes of dragonfly wings. Micro Res Technol, 2011, 74: 1134–1138

    Article  Google Scholar 

  76. Zhao H X, Yin Y J, Zhong Z. Nano fibrous multilayered composites in pterostigma of dragonfly. Chin Sci Bull, 2010, 55(18): 1856–1858

    Article  Google Scholar 

  77. Norberg R A. The pterostigma of insect wings an inertial regulatorof wing pith. J Eomp Physiol, 1972, 81: 9–22

    Article  Google Scholar 

  78. J X Y, Yan J P. Status and prospects of driving mode about the wing for the bionics flapping aerocraft. Manuf Automat, 2007, 29(1): 5–9

    Google Scholar 

  79. Zeng L J, Matsumoto H K, Kawachi K J. A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing. Meas Sci Technol, 1996, 7: 776–781

    Article  Google Scholar 

  80. Wang H, Zeng L J, Liu H, et al. Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. J Exp Biol, 2003, 206: 745–757

    Article  Google Scholar 

  81. Song D Q, Wang H, Zeng L J, et al. Measuring the camber eformation of a dragonfly wing using projected comb fringe. Rev Sci Istrum, 2001, 72(5): 2450–2454

    Article  Google Scholar 

  82. Cai Z J, Zeng L J, Feng Z J. Extracting the weak distorted fringes on the dragon’y wing by a correlation algorithm. Opt Laser Tech, 2001, 33: 493–497

    Article  Google Scholar 

  83. Ma J F, Chen W Y, Zhao L, et al. Bionic design of aircraft reinforced frame based on structure of dragonfly wing. Acta Aeronaut Et Astronaut Sin, 2009, 30(3): 562–569

    Google Scholar 

  84. Ang H S, Xiao T H, Duan W B. Flight mechanism and design of biomime tic micro air vehicles. Sci China Ser E-Tech Sci, 2009, 52(12): 3722–3728

    Article  MATH  Google Scholar 

  85. Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair. Nature, 2000, 405(6787): 681–685

    Article  Google Scholar 

  86. Park J B. Biomaterial Science and Engineering. New York: Pergamon Press, 1984

    Book  Google Scholar 

  87. Fratzl P, Gupta H S, Paschalis E P, et al. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem, 2004, 14: 2115–2123

    Article  Google Scholar 

  88. Chen J Q. Lignumic. Shanghai: China Forestry Publishing House, 1985

    Google Scholar 

  89. Zhao G J. Nano-dimensions in wood, nano-wood, wood and inorganic nano-composites. J Beijing Forestry Univ, 2002, 24(5–6): 204–207

    Google Scholar 

  90. Roveri N, Falini G, Sidoti M C, et al. Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Mater Sci Eng C, 2003, 23: 441–446

    Article  Google Scholar 

  91. Lu W Q, Wang P F, Jiao C M, et al. Study on preparation of bionic HAP material by bicontinuous microemulsion template method. Chin J Inorgan Chem, 2004, 20(9): 1035–1039

    Google Scholar 

  92. Wang L D, Sun W Z, Liang T X, et al. The research status of biomimetic materials. Mater Eng, 1996, 17: 3–5

    Google Scholar 

  93. Xian X J, Xian D G, Ye Y W. Bamboo Fiber Reinforced Resin Composite and Microcosmic Morphology. Beijing: Science Press, 1995

    Google Scholar 

  94. Li B Q, Hu Q L, Qian X Z, et al. Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture. Acta Polym Sin, 2002, 6: 828–833

    Google Scholar 

  95. Qiao G J, Ma R, Cai N, et al. Microstructure transmissibility in preparing SiC ceramics form natural wood. J Mater Pro Tech, 2002, 120: 107–110

    Article  Google Scholar 

  96. Zhao Y R. Structural characters, nanomechanical behaviors and biomimetical analysis of dragonfly membranous wing. Dissertation for Doctor Degree. Jilin: Jilin Universiy, 2007

    Google Scholar 

  97. Tian J M. Studies on the new-sytle reticulately stieffning thin-wall space structures by bionic modeling of dragonly wings. Thesis for Master Degree. Zhejiang: Zhejiang Universiy, 2006

    Google Scholar 

  98. Shen W. Studies on the new-sytle reticulately stieffning thin-wall cantilever by bionic modeling of dragonfly wings. Thesis for Master Degree. Zhejiang: Zhejiang Universiy, 2006

    Google Scholar 

  99. Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Botany, 1997, 79: 667–677

    Article  Google Scholar 

  100. Burte H M, Deusen R L, Hemenger P M, et al. The Potential Impact of Biotechnology on Composites. Lancaster Pennsylvania: Tech Pub Co Inc, 1986

    Google Scholar 

  101. Xing D H, Chen W Y, Zhao L, et al. Structural bionic design for high-speed machine tool working table based on distribution rules of leaf veins. Sci China Tech Sci, 2012, 55: 2091–2098

    Article  Google Scholar 

  102. Wen L, Wang T M, Wu G H, et al. Hybrid undulatory kinematics of a robotic Mackerel (Scomber scombrus): Theoretical modeling and experimental investigation. Sci China Tech Sci, 2012, 55: 2941–2952

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LuQuan Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, L., Li, X. Functional characteristics of dragonfly wings and its bionic investigation progress. Sci. China Technol. Sci. 56, 884–897 (2013). https://doi.org/10.1007/s11431-013-5158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5158-9

Keywords

Navigation