Skip to main content
Log in

Ultralight X-type lattice sandwich structure (I): Concept, fabrication and experimental characterization

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

A new type of ultra-lightweight metallic lattice structure (named as the X-type structure) is reported. This periodic structure was formed by two groups of staggered struts in the traditional pyramid structure, and fabricated by folding expanded metal sheet along rows of offset nodes and then brazing the folded structure (as the core) with top and bottom facesheets to form sandwich panels. The out-of-plane compressive and shear properties of the X-type lattice sandwich structure were investigated experimentally and compared to those of the sandwich having a pyramidal truss core. It is found that the formation of the 2-dimensional staggered nodes can effectively make the X-type structure more resistant to inelastic and plastic buckling under both compression and shear loading than the pyramidal lattice truss. Obtained results show that the compressive and shear peak strengths of the X-type lattice structure are about 30% higher than those of the pyramidal lattice truss having the same relative density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals. Prog Mater Sci, 2001, 46(3–4): 309–327

    Article  Google Scholar 

  2. Lu T J, He D P, Chen C, et al. The multi-functionality of multi- functionality of ultra-light porous metals and their applications (in Chinese). Adv Mech, 2006, 36(4): 517–535

    Google Scholar 

  3. Fan H L, Yang W. Development of lattice materials with high specific stiffness and strength (in Chinese). Adv Mech, 2007, 37(1): 99–112

    MathSciNet  Google Scholar 

  4. Wadley H N G. Multifunctional periodic cellular metals. Phil Trans R Soc A, 2006, 364(1838): 31–68

    Article  Google Scholar 

  5. Lu T J, Zhang Q C, Wang C Y, et al. Application of lightweight materials and structures in machine tools (in Chinese). Mech Eng, 2007, 29(6): 1–9

    Google Scholar 

  6. Lu T J, Liu T, Deng Z C. Multifunctional design of cellular metals: A review (in Chinese). Mech Eng, 2008, 30(1): 1–9

    Google Scholar 

  7. Lu T J, Liu T, Deng Z C. Thermoelastic properties of pin-reinforced sandwich foam cores. Sci China Ser E-Tech Sci, 2008, 51(2): 1–16

    Article  MATH  Google Scholar 

  8. Fan H L, Yang W, Fang D N, et al. Interlacing technique for new carbon fiber lattice materials (in Chinese). J Aeronaut Mater, 2007, 27(01): 73–77

    Google Scholar 

  9. Zhang D L, Chen Z M, Xu M L, et al. Feasibility of ECT technique in NDT of ultralight lattice material of sandwich structure. Nondestr Test, 2008, 30(7): 704–711

    Google Scholar 

  10. Ashby M F, Evans A G, Fleck N A, et al. Metal Forms: A Design Guide. Boston: Butterworth-Heinemann, 2000

    Google Scholar 

  11. Lu T J, Hutchinson J W, Evans A G. Optimal design of a flexural actuator. J Mech Phys Solids, 2001, 49(9): 2071–2093

    Article  MATH  Google Scholar 

  12. Gu S, Lu T J, Evans A G. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. Int J Heat Mass Transf, 2001, 44(11): 2163–2175

    Article  MATH  Google Scholar 

  13. Wallach J C, Gibson L J. Mechanical behavior of a three-dimensional truss material. Int J Solid Struct, 2001, 38(40–41): 7181–7196

    Article  MATH  Google Scholar 

  14. Sypeck D J, Wadley H N G. Cellular Metals and Metal Foaming Technology. Bremen: MIT-Verlag, 2001

    Google Scholar 

  15. Sypeck D J, Wadley H N G. Cellular metal truss core sandwich structures. Adv Eng Mater, 2002, 4(10): 759–764

    Article  Google Scholar 

  16. Chiras S, Mumm D R, Evans A G, et al. The structural performance of near-optimized truss core panels. Int J Solid Struct, 2002, 39(15): 4093–4115

    Article  Google Scholar 

  17. Sugimura Y. Mechanical response of single-layer tetrahedral trusses under shear loading. Mech Mater, 2004, 36(8): 715–721

    Article  Google Scholar 

  18. Wicks N, Hutchinson J W. Performance of sandwich plates with truss cores. Mech Mater, 2004, 36(8): 739–751

    Article  Google Scholar 

  19. Wallach J C, Gibson L J. Defect sensitivity of a 3D truss material. Scripta Mater, 2001, 45(6): 639–644

    Article  Google Scholar 

  20. Deshpande V S, Fleck N A, Ashby M F. Effective properties of the octet-truss lattice material. J Mech Phys Solid, 2001, 49(8): 1747–1769

    Article  MATH  Google Scholar 

  21. Zhou J, Shrotriya P, Soboyejo W O. On the deformation of aluminum lattice block structures: From struts to structures. Mech Mater, 2004, 36(8): 723–737

    Article  Google Scholar 

  22. Hyun S, Torquato S. Qptimal and manufacturable two-dimensional Kagome-like cellular solids. J Mater Res, 2002, 17(1): 137–144

    Article  Google Scholar 

  23. Lee Y H, Lee B K, Jeon I, et al. Wire-woven bulk Kagome truss cores. Acta Mater, 2007, 55(18): 6084–6094

    Article  Google Scholar 

  24. Sypeck D J, Wadley H N G. Multifunctional microtruss laminates: Textile synthesis and properties. J Mater Res, 2001, 16(3): 890–897

    Article  Google Scholar 

  25. Zok F W, Rathbun H J, Wei Z, et al. Design of metallic textile core sandwich panels. Int J Solid Struct, 2003, 40(21): 5707–5722

    Article  MATH  Google Scholar 

  26. Chiras S, Mumm D R, Evans A G, et al. The structural performance of near-optimized truss core panels. Int J Solid Struct, 2002, 39(15): 4093–4115

    Article  Google Scholar 

  27. Zupan M, Deshpande V S, Fleck N A. The out-of-plane compressive behavior of woven-core sandwich plates. Euro J Mech A/Solids, 2004, 23(2): 411–421

    Article  MATH  Google Scholar 

  28. Deshpande V S, Ashby M F, Fleck N A. Foam topology bending versus stretching dominated architectures. Acta Mater, 2001, 49(6): 1035–1040

    Article  Google Scholar 

  29. Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Mater, 2004, 52(14): 4229–4237

    Article  Google Scholar 

  30. Côté F, Fleck N A, Deshpande V S. Fatigue performance of sandwich beams with a pyramidal core. Int J Fatigue, 2007, 29(8): 1402–1412

    Article  Google Scholar 

  31. Queheillalt D T, Wadley H N G. Cellular metal lattices with hollow trusses. Acta Mater, 2005, 53(2): 303–313

    Article  Google Scholar 

  32. Kooistra G W, Wadley H N G. Lattice truss structures from expanded metal sheet. J Mater Design, 2007, 28(2): 507–514

    Article  Google Scholar 

  33. Hyun S, Karlsson A M, Torquato S, et al. Simulated properties of Kagome and tetragonal truss core panel. Int J Solid Struct, 2003, 40(25): 6989–6998

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang J, Evans A G, Dharmasena K, et al. On the performance of truss panels with Kagome cores. Int J Solid Struct, 2003, 40(25): 6981–6988

    Article  Google Scholar 

  35. Lim J H, Kang K J, Lim J H, et al. Mechanical behavior of sandwich panels with tetrahedral and Kagome truss cores fabricated from wires. Int J Solid Struct, 2006, 43(17): 5228–5246

    Article  MATH  Google Scholar 

  36. Zhang Y H, Qiu X M, Fang D N. Mechanical properties of two novel planar lattice structures. Int J Solid Struct, 2008, 45(13): 3751–3768

    Article  MATH  Google Scholar 

  37. Zhang Q C, Chen A P, Chen C, et al. Ultralight X-type lattice sandwich structure (II): Micromechanics modeling and finite element analysis. Sci China Ser E-Tech Sci, 2009, doi: 10.1007/s11431-009-0228-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianJian Lu.

Additional information

Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2006CB601202), the National Natural Science Foundation of China (Grant Nos. 10632060,10825210), the National “111” Project of China (Grant No. B06024) and the National High-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA03Z519)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Han, Y., Chen, C. et al. Ultralight X-type lattice sandwich structure (I): Concept, fabrication and experimental characterization. Sci. China Ser. E-Technol. Sci. 52, 2147–2154 (2009). https://doi.org/10.1007/s11431-009-0219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0219-9

Keywords

Navigation