Skip to main content
Log in

Late Holocene hydroclimatic variations and possible forcing mechanisms over the eastern Central Asia

  • Research Paper
  • Special Topic: China since the Last Glacial Maximum
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Hydroclimatic variations over the eastern Central Asia are highly sensitive to changes in hemispheric-scale atmospheric circulation systems. To fully understand the long-term variability and relationship between hydroclimate and atmospheric circulation system, we present a high-resolution lascustrine record of late Holocene hydroclimate from Lake Sayram, Central Tianshan Mountains, China, based on the total organic carbon, total nitrogen, and carbonate contents, carbon/nitrogen ratios, and grain size. Our results reveal four periods of substantially increased precipitation at the interval of 4000–3780, 3590–3210, 2800–2160, and 890–280 cal yr BP, and one period of slightly increased precipitation from 1700–1370 cal yr BP. These wetter periods broadly coincide with those identified in other records from the mid-latitude Westerlies-dominated eastern Central Asia, including the northern Tibetan Plateau. As such, a similar hydroclimatic pattern existed over this entire region during the late Holocene. Based on a close similarity of our record with reconstruction of North Atlantic Oscillation indices and solar irradiance, we propose that decreased solar irradiance and southern migration of the entire circum-North Atlantic circulation system, particularly the main pathway of the mid-latitude Westerlies, significantly influenced hydroclimate in eastern Central Asia during the late Holocene. Finally, the inferred precipitation at Lake Sayram has increased markedly over the past 100 years, although this potential future changes in hydroclimate in Central Asia need for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aichner B, Feakins S J, Lee J E, Herzschuh U, Liu X. 2015. High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia. Clim Past, 11: 619–633

    Google Scholar 

  • Aizen E M, Aizen V B, Melack J M, Nakamura T, Ohta T. 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int J Climatol, 21: 535–556

    Google Scholar 

  • Aizen V B, Aizen E M, Joswiak D R, Fujita K, Takeuchi N, Nikitin S A. 2006. Climatic and atmospheric circulation pattern variability from icecore isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol, 43: 49–60

    Google Scholar 

  • Aizen V B, Aizen E M, Melack J M, Dozier J. 1997. Climatic and hydrologic changes in the Tien Shan, Central Asia. J Clim, 10: 1393–1404

    Google Scholar 

  • Anderson N J, Bennion H, Lotter A F. 2014. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob Change Biol, 20: 2741–2751

    Google Scholar 

  • Appleby P G. 2001. Chronostratigraphic techniques in recent sediments. In: Last W M, Smol J P, eds. Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques. Dordrecht: Springer Netherlands. 171–203

    Google Scholar 

  • Appleby P G, Oldfield F, Thompson R, Huttunen P, Tolonen K. 1979. 210Pb dating of annually laminated lake sediments from Finland. Nature, 280: 53–55

    Google Scholar 

  • Bard E, Raisbeck G, Yiou F, Jouzel J. 2000. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B-Chem Phys Meteorol, 52: 985–992

    Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans M N, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294: 2130–2136

    Google Scholar 

  • Buckley B M, Anchukaitis K J, Penny D, Fletcher R, Cook E R, Sano M, Canh Nam L, Wichienkeeo A, That Minh T, Hong T M. 2010. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA, 107: 6748–6752

    Google Scholar 

  • Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W. 2010. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 29: 1055–1068

    Google Scholar 

  • Chen F H, Huang X Z, Zhang J W, Holmes J A, Chen J H. 2006. Humid little ice age in arid central Asia documented by Bosten Lake, Xinjiang, China. Sci China Ser-Earth Sci, 49: 1280–1290

    Google Scholar 

  • Chen F H, Yu Z C, Yang M L, Huang X, Zhao Y, Sato T, Birks H J B, Boomer I, Chena J, Ana C, Wunnemannj B. 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351–364

    Google Scholar 

  • Chen J H, Chen F H, Feng S, Huang W, Liu J B, Zhou A F. 2015. Hydroclimatic changes in China and surroundings during the Medieval climate anomaly and little ice age: Spatial patterns and possible mechanisms. Quat Sci Rev, 107: 98–111

    Google Scholar 

  • Chen Y N, Li W H, DengH J, Fang G H, Li Z. 2016. Changes in central Asia’s water tower: Past, present and future. Sci Rep, 6: 35458

    Google Scholar 

  • Cheng H, Zhang P Z, Spötl C, Edwards R L, Cai Y J, Zhang D Z, Sang W C, Tan M, An Z S. 2012. The climatic cyclicity in semiarid-arid central Asia over the past 500000 years. Geophys Res Lett, 39: L01705

    Google Scholar 

  • Cook E R, Woodhouse C A, Eakin C M, Meko D M, Stahle D W. 2004. Long-term aridity changes in the western United States. Science, 306: 1015–1018

    Google Scholar 

  • Deininger M, McDermott F, Mudelsee M, Werner M, Frank N, Mangini A. 2017. Coherency of late Holocene European speleothem d18O records linked to North Atlantic Ocean circulation. Clim Dyn, 49: 595–618

    Google Scholar 

  • Diaz H F, Trigo R, Hughes M K, Mann M E, Xoplaki E, Barriopedro D. 2011. Spatial and temporal characteristics of climate in Medieval Times revisited. Bull Amer Meteorol Soc, 92: 1487–1500

    Google Scholar 

  • Feng Z D, Wu H N, Zhang C J, Ran M, Sun A Z. 2013. Bioclimatic change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan, Central Asia. Quat Int, 311: 63–70

    Google Scholar 

  • Fontes J C, Gasse F, Gibert E. 1996. Holocene environmental changes in Lake Bangong basin (western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeogr Palaeoclimatol Palaeoecol, 120: 25–47

    Google Scholar 

  • Graham N E, Ammann C M, Fleitmann D, Cobb K M, Luterbacher J. 2011. Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim Dyn, 37: 1217–1245

    Google Scholar 

  • Gray L J, Beer J, Geller M, Haigh J D, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl G A, Shindell D, van Geel B, White W. 2010. Solar influences on climate. Rev Geophys, 48: RG4001

    Google Scholar 

  • Heathcote A J, Anderson N J, Prairie Y T, Engstrom D R, del Giorgio P A. 2015. Large increases in carbon burial in northern lakes during the Anthropocene. Nat Commun, 6: 10016

    Google Scholar 

  • Herzschuh U. 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50000 years. Quat Sci Rev, 25: 163–178

    Google Scholar 

  • Hodell D A, Brenner M, Curtis J H, Guilderson T. 2001. Solar forcing of drought frequency in the Maya lowlands. Science, 292: 1367–1370

    Google Scholar 

  • Hodell D A, Curtis J H, Brenner M. 1995. Possible role of climate in the collapse of Classic Maya civilization. Nature, 375: 391–394

    Google Scholar 

  • Hou J Z, D’Andrea W J, Liu Z H. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat Sci Rev, 48: 67–79

    Google Scholar 

  • Hu R J. 2004. Physical Geography of the Tianshan Mountaions in China (in Chinese). Beijing: China Environmental Science Press. 278–284

    Google Scholar 

  • Huang X T, Oberhansli H, von S H, Prasad S, Sorrel P, Plessen B, Mathis M, Usubaliev R. 2014. Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul. Quat Sci Rev, 103: 134–152

    Google Scholar 

  • IPCC. 2007. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press. 996

  • Jiang Q F, Ji J F, Shen J, Matsumoto R, Tong G B, Qian P, Ren X M, Yan D Z. 2013. Holocene vegetational and climatic variation in westerlydominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China. Sci China Earth Sci, 56: 339–353

    Google Scholar 

  • Klaminder J, Appleby P, Crook P, Renberg I. 2012. Post-deposition diffusion of 137Cs in lake sediment: Implications for radiocaesium dating. Sedimentology, 59: 2259–2267

    Google Scholar 

  • Lamb A L, Wilson G P, Leng M J. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using d13C and C/N ratios in organic material. Earth-Sci Rev, 75: 29–57

    Google Scholar 

  • Lan J H, Xu H, Sheng E G, Yu K K, Wu H X, Zhou K E, Yan D N, Ye Y D, Wang T L. 2018. Climate changes reconstructed from a glacial lake in High Central Asia over the past two millennia. Quat Int, 487: 43–53

    Google Scholar 

  • Lauterbach S, Witt R, Plessen B, Dulski P, Prasad S, Mingram J, Gleixner G, Hettler-Riedel S, Stebich M, Schnetger B, Schwalb A, Schwarz A. 2014. Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. Holocene, 24: 970–984

    Google Scholar 

  • Lei Y B, Tian L D, Bird B W, Hou J Z, Ding L, Oimahmadov I, Gadoev M. 2014. A 2540-year record of moisture variations derived from lacustrine sediment (Sasikul Lake) on the Pamir Plateau. Holocene, 24: 761–770

    Google Scholar 

  • Li X Q, Zhao K L, Dodson J, Zhou X Y. 2011. Moisture dynamics in central Asia for the last 15 kyr: New evidence from Yili Valley, Xinjiang, NW China. Quat Sci Rev, 30: 3457–3466

    Google Scholar 

  • Li Y, Qiang M R, Zhang J W, Huang X Z, Zhou A F, Chen J H, Wang G G, Zhao Y. 2017. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, Northwestern China. Quat Int, 452: 91–101

    Google Scholar 

  • Liu K, Yao Z, Thompson L G. 1998. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology, 26: 135

    Google Scholar 

  • Liu W, Wu J, Ma L, Zeng H. 2014. A 200-year sediment record of environmental change from Lake Sayram, Tianshan Mountains in China. GFF, 136: 548–555

    Google Scholar 

  • Liu W, Wu J L, Ma L, Zeng H A. 2011. Wet climate during the ‘Little Ice Age’ in the arid Tarim Basin, northwestern China. Holocene, 21: 409–416

    Google Scholar 

  • Liu X Q, Dong H L, Yang X D, Herzschuh U, Zhang E L, Stuut J B W, Wang Y B. 2009. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau. Earth Planet Sci Lett, 280: 276–284

    Google Scholar 

  • Liu X Q, Herzschuh U, Wang Y B, Kuhn G, Yu Z T. 2014. Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophys Res Lett, 41: 6265–6273

    Google Scholar 

  • Liu Y, An Z S, Linderholm H W, Chen D L, Song H M, Cai Q F, Sun J Y, Tian H. 2009. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci China Ser DEarth Sci, 52: 348–359

    Google Scholar 

  • Long H, Shen J, Chen J, Tsukamoto S, Yang L, Cheng H, Frechen M. 2017. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China. Quat Sci Rev, 174: 13–32

    Google Scholar 

  • Ma L, Wu J, Yu H, Haiao Z, Abuduwaili J. 2011. The medieval warm period and the little ice age from a sediment record of Lake Ebinur, northwest China. Boreas, 40: 518–524

    Google Scholar 

  • Meyers P A. 1990. Impacts of late Quaternary fluctuations in water level on the accumulation of sedimentary organic matter in Walker Lake, Nevada. Palaeogeogr Palaeoclimatol Palaeoecol, 78: 229–240

    Google Scholar 

  • Meyers P A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol, 114: 289–302

    Google Scholar 

  • Meyers P A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem, 27: 213–250

    Google Scholar 

  • Meyers P A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org Geochem, 34: 261–289

    Google Scholar 

  • Meyers P A, Ishiwatari R. 1993. Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 20: 867–900

    Google Scholar 

  • Meyers P A, Teranes J L. 2001. Sediment organic matter. In: Last W M, Smol J P, eds. Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Netherlands: Kluwer Academic Publishers. 239–240

    Google Scholar 

  • Mischke S, Wunnemann B. 2006. The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry: Possible palaeoclimatic implications. Quat Int, 154-155: 100–112

    Google Scholar 

  • Moffa-Sánchez P, Born A, Hall I R, Thornalley D J R, Barker S. 2014. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat Geosci, 7: 275–278

    Google Scholar 

  • Muller A, Mathesius U. 1999. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary C-org/N ratios as source indicators of organic matter. Palaeogeogr Palaeoclim Palaeoeco, 145: 1–16

    Google Scholar 

  • Olsen J, Anderson N J, Knudsen M F. 2012. Variability of the North Atlantic oscillation over the past 5200 years. Nat Geosci, 5: 808–812

    Google Scholar 

  • Orme L C, Charman D J, Reinhardt L, Jones R T, Mitchell F J G, Stefanini B S, Barkwith A, Ellis M A, Grosvenor M. 2017. Past changes in the North Atlantic storm track driven by insolation and sea-ice forcing. Geology, 45: 335–338

    Google Scholar 

  • Pederson N, Hessl A E, Baatarbileg N, Anchukaitis K J, Di Cosmo N. 2014. Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc Natl Acad Sci USA, 111: 4375–4379

    Google Scholar 

  • Peng Y J, Xiao J, Nakamura T, Liu B L, Inouchi Y. 2005. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of northcentral China. Earth Planet Sci Lett, 233: 467–479

    Google Scholar 

  • Pennington W, Tutin T G, Cambray R S, Fisher E M. 1973. Observations on lake sediments using fallout 137Cs as a tracer. Nature, 242: 324–326

    Google Scholar 

  • Putnam A E, Putnam D E, Andreu-Hayles L, Cook E R, Palmer J G, Clark E H, Wang C, Chen F, Denton G H, Boyle D P, Bassett S D, Birkel S D, Martin-Fernandez J, Hajdas I, Southon J, Garner C B, Cheng H, Broecker W S. 2016. Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire. Quat Sci Rev, 131: 33–50

    Google Scholar 

  • Putyrskaya V, Klemt E, Röllin S. 2009. Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland)— Analysis and comparison with Lago di Lugano and other lakes. J Environ Radioact, 100: 35–48

    Google Scholar 

  • Reimer P J, Baillie M G L, Bard E, Bayliss A, Warren Beck J, Bertrand C J H, Blackwell P G, Buck C E, Burr G S, Cutler K B, Damon P E, Lawrence Edwards R, Fairbanks R G, Friedrich M, Guilderson T P, Hogg A G, Hughen K A, Kromer B, McAffmac G, Manning S, Bronk Ramsey C, Reimer R W, Remmele S, Southon J R, Stuiver M, Talamo S, Taylor F W, van der Plicht J, Weyhenmeyer C E. 2004. Intcal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46: 1029–1058

    Google Scholar 

  • Reimer P J, Baillie M G L, Bard E, Bayliss A, Beck J W, Blackwell P G, Bronk Ramsey C, Buck C E, Burr G S, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kaiser K F, Kromer B, McCormac F G, Manning S W, Reimer R W, Richards D A, Southon J R, Talamo S, Turney C S M, van der Plicht J, Weyhenmeyer C E. 2009. Intcal09 and marine09 radiocarbon age calibration curves, 0–50000 years cal BP. Radiocarbon, 51: 1111–1150

    Google Scholar 

  • Rhodes T E, Gasse F, Lin R, Fontes J C, Wei K, Bertrand P, Gibert E, Mélières F, Tucholka P, Wang Z, Cheng Z Y. 1996. A late Pleistocene- Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeogr Palaeoclimatol Palaeoecol, 120: 105–121

    Google Scholar 

  • Robbins J A, Edgington D N. 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta, 39: 285–304

    Google Scholar 

  • Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andreev A, Daryin A, Diekmann B, Riedel F, Tserendash N, Wagner M. 2009. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: A step towards better understanding climate dynamics in Central Asia. Quat Sci Rev, 28: 540–554

    Google Scholar 

  • Sanchez-Cabeza J A, Ruiz-Fernández A C. 2012. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochim Cosmochim Acta, 82: 183–200

    Google Scholar 

  • Schurer A P, Tett S F B, Hegerl G C. 2014. Small influence of solar variability on climate over the past millennium. Nat Geosci, 7: 104–108

    Google Scholar 

  • Seong Y B, Owen L A, Yi C, Finkel R C, Schoenbohm L. 2009. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan. Geomorphology, 103: 227–250

    Google Scholar 

  • Sha L, Jiang H, Seidenkrantz M S, Knudsen K L, Olsen J, Kuijpers A, Liu Y. 2014. A diatom-based sea-ice reconstruction for the Vaigat Strait (Disko Bugt, West Greenland) over the last 5000 yr. Palaeogeogr Palaeoclimatol Palaeoecol, 403: 66–79

    Google Scholar 

  • Sha L, Jiang H, Seidenkrantz M S, Muscheler R, Zhang X, Knudsen M F, Olsen J, Knudsen K L, Zhang W. 2016. Solar forcing as an important trigger for West Greenland sea-ice variability over the last millennium. Quat Sci Rev, 131: 148–156

    Google Scholar 

  • Sigl M, Winstrup M, McConnell J R, Welten K C, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H, Kipfstuhl S, Kostick C, Maselli O J, Mekhaldi F, Mulvaney R, Muscheler R, Pasteris D R, Pilcher J R, Salzer M, Schüpbach S, Steffensen J P, Vinther B M, Woodruff T E. 2015. Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature, 523: 543–549

    Google Scholar 

  • Song M, Zhou A F, Zhang X N, Zhao C, He Y X, Yang W Q, Liu W G, Li S H, Liu Z H. 2015. Solar imprints on Asian inland moisture fluctuations over the last millennium. Holocene, 25: 1935–1943

    Google Scholar 

  • Stuiver M, Reimer P J. 1993. Extended 14C data base and revised calib 3.0 14C age calibration program. Radiocarbon, 35: 215–230

    Google Scholar 

  • Stuiver M, Reimer P J, Bard E, Beck J W, Burr G S, Hughen K A, Kromer B, McCormac G, Van Der Plicht J, Spurk M. 1998. Intcal98 radiocarbon age calibration, 24000–0 cal BP. Radiocarbon, 40: 1041–1083

    Google Scholar 

  • Sun Y B, Clemens S C, Morrill C, Lin X P, Wang X L, An Z S. 2011. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci, 5: 46–49

    Google Scholar 

  • Sun Y B, Kutzbach J, An Z S, Clemens S, Liu Z Y, Liu W G, Liu X D, Shi Z G, Zheng W P, Liang L J, Yan Y, Li Y. 2015. Astronomical and glacial forcing of East Asian summer monsoon variability. Quat Sci Rev, 115: 132–142

    Google Scholar 

  • Swingedouw D, Terray L, Cassou C, Voldoire A, Salas-Mélia D, Servonnat J. 2011. Natural forcing of climate during the last millennium: Fingerprint of solar variability. Clim Dyn, 36: 1349–1364

    Google Scholar 

  • Talbot M R, Johannessen T. 1992. A high resolution palaeoclimatic record for the last 27500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett, 110: 23–37

    Google Scholar 

  • Tan L C, Cai Y J, An Z S, Cheng H, Shen C C, Breitenbach S F M, Gao Y L, Edwards R L, Zhang H W, Du Y J. 2015. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years. Sci Rep, 5: 12284

    Google Scholar 

  • Thiéblemont R, Matthes K, Omrani N E, Kodera K, Hansen F. 2015. Solar forcing synchronizes decadal North Atlantic climate variability. Nat Commun, 6: 8268

    Google Scholar 

  • Thompson L G, Yao T, Davis M E, Henderson K A, MosleyThompson E, Lin P N, Beer J, Synal H A, ColeDai J, Bolzan J F. 1997. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 276: 1821–1825

    Google Scholar 

  • Trouet V, Esper J, Graham N E, Baker A, Scourse J D, Frank D C. 2009. Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science, 324: 78–80

    Google Scholar 

  • Wan G J. 1995. Progresses on 137Cs and 210Pbex dating of lake sediments (in Chinese). Adv Earth Sci, 10: 188–192

    Google Scholar 

  • Wang S J. 1978. The relationship between formation and evolution of Lake Sayram and glacier activity during the Quaternary (in Chinese). Arid Land Geogr, 1: 47–55

    Google Scholar 

  • Wang S M, Dou H S. 1998. China Lakes Record (in Chinese). Beijing: Science Press. 348–349

    Google Scholar 

  • Wang W Z, Liu X H, Xu G B, Shao X M, Qin D H, Sun W Z, An W L, Zeng X M. 2013. Moisture variations over the past millennium characterized by Qaidam Basin tree-ring d18O. Chin Sci Bull, 58: 3956–3961

    Google Scholar 

  • Wang W, Feng Z D, Ran M, Zhang C J. 2013. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia. Quat Int, 311: 54–62

    Google Scholar 

  • Wieland E, Santschi P H, Höhener P, Sturm M. 1993. Scavenging of chernobyl 137Cs and natural 210Pb in Lake Sempach, Switzerland. Geochim Cosmochim Acta, 57: 2959–2979

    Google Scholar 

  • Wirth S B, Glur L, Gilli A, Anselmetti F S. 2013. Holocene flood frequency across the Central Alps-solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quat Sci Rev, 80: 112–128

    Google Scholar 

  • Wittkop C A, Teranes J L, Dean W E, Guilderson T P. 2009. A lacustrine carbonate record of Holocene seasonality and climate. Geology, 37: 695–698

    Google Scholar 

  • Wolff C, Plessen B, Dudashvilli A S, Breitenbach S F, Cheng H, Edwards L R, Strecker M R. 2017. Precipitation evolution of Central Asia during the last 5000 years. Holocene, 27: 142–154

    Google Scholar 

  • Wu J L, Zeng H A, Ma L, Bai R D. 2012. Recent changes of selected lake water resoures in arid Xinjiang, Northwestern China (in Chinese). Quat Sci, 32: 142–150

    Google Scholar 

  • Xiao J L, Fan J W, Zhai D Y, Wen R L, Qin X G. 2015. Testing the model for linking grain-size component to lake level status of modern clastic lakes. Quat Int, 355: 34–43

    Google Scholar 

  • Xiao J L, Fan J W, Zhou L, Zhai D Y, Wen R L, Qin X G. 2013. A model for linking grain-size component to lake level status of a modern clastic lake. J Asian Earth Sci, 69: 149–158

    Google Scholar 

  • Xiao J L, Chang Z, Si B, Qin X, Itoh S, Lomtatidze Z. 2009. Partitioning of the grain-size components of Dali Lake core sediments: Evidence for lake-level changes during the Holocene. J Paleolimnol, 42: 249–260

    Google Scholar 

  • Xiao J L, Si B, Zhai D Y, Itoh S, Lomtatidze Z. 2008. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. J Paleolimnol, 40: 519–528

    Google Scholar 

  • Xiao J L, Wu J, Si B, Liang W, Nakamura T, Liu B, Inouchi Y. 2006. Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. Holocene, 16: 551–560

    Google Scholar 

  • Xu H, Ai L, Tan L, An Z. 2006a. Geochronology of a surface core in the northern basin of Lake Qinghai: Evidence from 210Pb and 137Cs radionuclides. Chin J Geochem, 25: 301–306

    Google Scholar 

  • Xu H, Ai L, Tan L, An Z. 2006b. Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chem Geol, 235: 262–275

    Google Scholar 

  • Xu H, Lan J, Liu B, Sheng E, Yeager K M. 2013. Modern carbon burial in Lake Qinghai, China. Appl Geochem, 39: 150–155

    Google Scholar 

  • Xu H, Liu X Y, An Z S, Hou Z H, Dong J B, Liu B. 2010. Spatial pattern of modern sedimentation rate of Qinghai Lake and a preliminary estimate of the sediment flux. Chin Sci Bull, 55: 621–627

    Google Scholar 

  • Xu H, Liu X, Hou Z. 2008. Temperature variations at Lake Qinghai on decadal scales and the possible relation to solar activities. J Atmos Sol- Terr Phys, 70: 138–144

    Google Scholar 

  • Xu H, Zhou X Y, Lan J H, Liu B, Sheng E G, Yu K K, Cheng P, Wu F, Hong B, Yeager K M, Xu S. 2015. Late Holocene Indian summer monsoon variations recorded at Lake Erhai, Southwestern China. Quat Res, 83: 307–314

    Google Scholar 

  • Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C. 2011. A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies. Nat Geosci, 4: 611–614

    Google Scholar 

  • Yan H, Wei W, Soon W, An Z, Zhou W, Liu Z, Wang Y, Carter R M. 2015. Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age. Nat Geosci, 8: 315–320

    Google Scholar 

  • Yang B, Wang J, Brauning A, Dong Z, Esper J. 2009. Late Holocene climatic and environmental changes in arid central Asia. Quat Int, 194: 68–78

    Google Scholar 

  • Yao T D, Qin D H, Tian L D, Jiao K Q, Yang Z H, Xie C, Thompson L G. 1996. Variations in temperature and precipitation in the past 2000 a on the Xizang (Tibet) Plateau——Guliya ice core record. Sci China Ser DEarth Sci, 39: 425–433

    Google Scholar 

  • Yu K, Xu H, Lan J, Sheng E, Liu B, Wu H, Tan L, Yeager K M. 2017. Climate change and soil erosion in a small alpine lake basin on the Loess Plateau, China. Earth Surf Process Land, 42: 1238–1247

    Google Scholar 

  • Yu S Y, Cheng P, Hou Z F. 2014. A caveat on radiocarbon dating of organic-poor bulk lacustrine sediments in arid China. Radiocarbon, 56: 127–141

    Google Scholar 

  • Zhang C, Feng Z, Yang Q, Gou X, Sun F. 2010. Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China. Holocene, 20: 363–373

    Google Scholar 

  • Zhang P Z, Cheng H, Edwards R L, Chen F H, Wang Y J, Yang X L, Liu J, Tan M, Wang X F, Liu J H, An C L, Dai Z B, Zhou J, Zhang D Z, Jia J H, Jin L Y, Johnson K R. 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322: 940–942

    Google Scholar 

  • Zhao K L, Li X Q, Dodson J, Atahan P, Zhou X Y, Bertuch F. 2012. Climatic variations over the last 4000 cal yr BP in the western margin of the Tarim Basin, Xinjiang, reconstructed from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol, 321-322: 16–23

    Google Scholar 

Download references

Acknowledgements

This work is a part of The “Belt & Road” Project of the Institute of Earth and Environment, Chinese Academy of Sciences. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41672169, 41473120 & 41502171) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2012295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, J., Xu, H., Yu, K. et al. Late Holocene hydroclimatic variations and possible forcing mechanisms over the eastern Central Asia. Sci. China Earth Sci. 62, 1288–1301 (2019). https://doi.org/10.1007/s11430-018-9240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9240-x

Keywords

Navigation