Skip to main content
Log in

Variation in vegetation greenness along China’s land border

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Fourteen countries share about 22000 km land border with China, but not much is known about the variation in vegetation in such a large diverse area. By employing the remotely-sensed vegetation indices the vegetation greenness along the border was discussed. Our results show that since the early 21st century, similar trends in vegetation greenness have occurred along most of China’s border, but differences occurred on either side of the border. Along the border with North Korea and South Asian nations, greater increasing trend in vegetation greenness occurred inside China’s border, suggesting that China’s vegetation protection programs have been successful. Spatial and temporal variations in vegetation greenness trends were observed along China’s border with Russia, Mongolia, and Central Asian nations. Vegetation variation was lower inside China, along the Russian border, and China’s eastern border with Mongolia. Along most borders with Central Asian nations, rates of vegetation change inside China’s border during the growing season were higher than the rates outside the border. The results suggest that social customs, resource exploitation patterns, and national environmental conservation programs may profoundly affect vegetation greenness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An Y Z, Gao W, Gao Z Q, Liu C S, Shi R H. 2015. Trend analysis for evaluating the consistency of Terra MODIS and SPOT VGT NDVI time series products in China. Front Earth Sci, 9: 125–136

    Article  Google Scholar 

  • Anderson L O, Malhi Y, Aragão L E O C, Ladle R, Arai E, Barbier N, Phillips O. 2010. Remote sensing detection of droughts in Amazonian forest canopies. New Phytol, 187: 733–750

    Article  Google Scholar 

  • Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X. 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89: 2140–2153

    Article  Google Scholar 

  • Brando P M, Goetz S J, Baccini A, Nepstad D C, Beck P S A, Christman M C. 2010. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc Natl Acad Sci USA, 107: 14685–14690

    Article  Google Scholar 

  • Brown M E, Pinzon J E, Didan K, Morisette J T, Tucker C J. 2006. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, Sea WiFS, MODIS, and Landsat ETM+sensors. IEEE Trans Geosci Remote Sens, 44: 1787–1793

    Article  Google Scholar 

  • Cao S, Chen L, Shankman D, Wang C, Wang X, Zhang H. 2011. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci Rev, 104: 240–245

    Article  Google Scholar 

  • Chen P Y, Fedosejevs G, Tiscareño-López M, Arnold J G. 2006. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: An example at corn fields in western Mexico. Environ Monit Assess, 119: 69–82

    Article  Google Scholar 

  • Davie H S, Murdoch J D, Lhagvasuren A, Reading R P. 2014. Measuring and mapping the influence of landscape factors on livestock predation by wolves in Mongolia. J Arid Environ, 103: 85–91

    Article  Google Scholar 

  • De Jong R, Schaepman M E, Furrer R, de Bruin S, Verburg P H. 2013. Spatial relationship between climatologies and changes in global vegetation activity. Glob Change Biol, 19: 1953–1964

    Article  Google Scholar 

  • Didan K, Munoz A B, Solano R, Huete A. 2010. MODIS vegetation index user’s guide (MOD13 series). Available online: https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/ mod13_user_guide.pdf (accessed on 01 November 2016)

    Google Scholar 

  • Elmendorf S C, Henry G H R, Hollister R D, Fosaa A M, Gould W A, Hermanutz L, Hofgaard A, Jónsdóttir I S, Jónsdóttir I I, Jorgenson J C, Lévesque E, Magnusson B, Molau U, Myers-Smith I H, Oberbauer S F, Rixen C, Tweedie C E, Walker M D, Walker M. 2015. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc Natl Acad Sci USA, 112: 448–452

    Article  Google Scholar 

  • Fensholt R, Rasmussen K, Nielsen T T, Mbow C. 2009. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens Environ, 113: 1886–1898

    Article  Google Scholar 

  • Foulds S A, Brewer P A, Macklin M G, Haresign W, Betson R E, Rassner S M E. 2014. Flood-related contamination in catchments affected by historical metal mining: An unexpected and emerging hazard of climate change. Sci Total Environ, 476-477: 165–180

    Article  Google Scholar 

  • Gao X, Huete A R, Ni W, Miura T. 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sens Environ, 74: 609–620

    Article  Google Scholar 

  • Haberl H, Erb K H, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M. 2007. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA, 104: 12942–12947

    Article  Google Scholar 

  • Holben B N. 1986. Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens, 7: 1417–1434

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 83: 195–213

    Article  Google Scholar 

  • Huon S, de Rouw A, Bonté P, Robain H, Valentin C, Lefèvre I, Girardin C, Le Troquer Y, Podwojewski P, Sengtaheuanghoung O. 2013. Long-term soil carbon loss and accumulation in a catchment following the conversion of forest to arable land in northern Laos. Agric Ecosyst Environ, 169: 43–57

    Article  Google Scholar 

  • Jiang B, Liang S. 2013. Improved vegetation greenness increases summer atmospheric water vapor over Northern China. J Geophys Res-Atmos, 118: 8129–8139

    Article  Google Scholar 

  • Jones R. 2012. Borders, sovereignty, and unrecognized states. Political Geogr, 31: 534–535

    Article  Google Scholar 

  • Kröel-Dulay G, Ransijn J, Schmidt I K, Beier C, De Angelis P, de Dato G, Dukes J S, Emmett B, Estiarte M, Garadnai J, Kongstad J, Kovács-Láng E, Larsen K S, Liberati D, Ogaya R, Riis-Nielsen T, Smith A R, Sowerby A, Tietema A, Penuelas J. 2015. Increased sensitivity to climate change in disturbed ecosystems. Nat Commun, 6: 6682

    Article  Google Scholar 

  • Le Dang H, Li E, Nuberg I, Bruwer J. 2014. Farmers’ perceived risks of climate change and influencing factors: A study in the Mekong Delta, Vietnam. Environ Manage, 54: 331–345

    Article  Google Scholar 

  • Lioubimtseva E, Henebry G M. 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J Arid Environ, 73: 963–977

    Article  Google Scholar 

  • Liu J, Li S, Ouyang Z, Tam C, Chen X. 2008. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc Natl Acad Sci USA, 105: 9477–9482

    Article  Google Scholar 

  • Liu X, Zhu X, Li S, Liu Y, Pan Y. 2015. Changes in growing season vegetation and their associated driving forces in China during 2001–2012. Remote Sens, 7: 15517–15535

    Article  Google Scholar 

  • Ma Z, Peng C, Zhu Q, Chen H, Yu G, Li W, Zhou X, Wang W, Zhang W. 2012. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc Natl Acad Sci USA, 109: 2423–2427

    Article  Google Scholar 

  • Måren I E, Karki S, Prajapati C, Yadav R K, Shrestha B B. 2015. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J Arid Environ, 121: 112–123

    Article  Google Scholar 

  • Niu Z, Wang S, Xie T. 1990. Geography of China’s Borders (in Chinese). Beijing: People’s Education Press of China

    Google Scholar 

  • Papes M, Gaubert P. 2007. Modelling ecological niches from low numbers of occurrences: Assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity Distrib, 13: 890–902

    Article  Google Scholar 

  • Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J. 2011. Changes in satellitederived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob Change Biol, 17: 3228–3239

    Article  Google Scholar 

  • Santer B D, Wigley T M L, Boyle J S, Gaffen D J, Hnilo J J, Nychka D, Parker D E, Taylor K E. 2000. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res, 105: 7337–7356

    Article  Google Scholar 

  • Shen M, Piao S, Jeong S J, Zhou L, Zeng Z, Ciais P, Chen D, Huang M, Jin C S, Li L Z, Li Y, Myneni R B, Yang K, Zhang G, Zhang Y, Yao T. 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc Natl Acad Sci USA, 112: 9299–9304

    Article  Google Scholar 

  • Soysal Ö M, Schneider H, Shrestha A, Guempel C D, Li P, Donepudi H, Kondoju N K, Sekeroglu K. 2012. Zonal statistics to identify hot-regions of traffic accidents. In: 9th Int. Conf. on Modeling, Simulation and Visualization Methods.

    Google Scholar 

  • WORLDCOMP State Forestry Administration. 2009. China Forestry Yearbook (in Chinese). Beijing: China Forestry Press

    Google Scholar 

  • Sternberg T. 2008. Environmental challenges in Mongolia’s dryland pastoral landscape. J Arid Environ, 72: 1294–1304

    Article  Google Scholar 

  • Tian F, Fensholt R, Verbesselt J, Grogan K, Horion S, Wang Y. 2015. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens Environ, 163: 326–340

    Article  Google Scholar 

  • Wang X, Hasi Eerdun X, Zhou Z, Liu X. 2007. Significance of variations in the wind energy environment over the past 50 years with respect to dune activity and desertification in arid and semiarid northern China. Geomorphology, 86: 252–266

    Article  Google Scholar 

  • Wang G, Innes J L, Lei J, Dai S, Wu S W. 2007. Ecology: China’s forestry reforms. Science, 318: 1556–1557

    Article  Google Scholar 

  • Zheng S. 2012. An Introduction to the Border Areas of China (in Chinese). Kunming: Yunnan People’s Press

    Google Scholar 

  • Zhou D, Zhao S, Liu S, Zhang L. 2014. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities. Sci Total Environ, 488-489: 136–145

    Article  Google Scholar 

  • Zhou L, Tucker C J, Kaufmann R K, Slayback D, Shabanov N V, Myneni R B. 2001. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res, 106: 20069–20083

    Article  Google Scholar 

  • Zhou Q. 2015. Eco-frontier researches from histories of environmental views. Ideological Front, 41: 85–96

    Google Scholar 

  • Zhu Z, Fu Y, Woodcock C E, Olofsson P, Vogelmann J E, Holden C, Wang M, Dai S, Yu Y. 2016. Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sens Environ, 185: 243–257

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the Geospatial Information Authority of Japan, Chiba University and collaborating organizations for providing the land cover data. Special thanks are given to the anonymous referees for their constructive criticisms. This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601900), Key Frontier Program of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-DQC043), and the National Science Fund for Distinguished Young Scholars of China (Grant No. 41225001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XunMing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, W., Hua, T. et al. Variation in vegetation greenness along China’s land border. Sci. China Earth Sci. 60, 2025–2032 (2017). https://doi.org/10.1007/s11430-016-9078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9078-8

Keywords

Navigation