Skip to main content
Log in

Progress on deep circulation and meridional overturning circulation in the South China Sea

  • Progress
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The deep overflow through the Luzon Strait drives the cyclonic deep circulation in the South China Sea (SCS). In the mean time, the intruding Pacific deep water transforms and upwells due to enhanced diapycnal mixing in the SCS. Both processes greatly contribute to the SCS meridional overturning circulation (SCSMOC). At the same time, both the deep circulation and meridional overturning circulation are modulated by rough topography in the SCS. Furthermore, the spatial structure of the SCSMOC infers a link between the upper-layer circulation and deep circulation in the SCS. This paper reviews recent advances in the SCS deep circulation and meridional overturning circulation, including the driving mechanism of the SCS deep circulation and its modulation by topography, as well as the spatial structure of the SCSMOC and its dynamical mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broecker W S, Patzert W C, Toggweiler J R, Stuiver M. 1986. Hydrography, chemistry, and radioisotopes in the southeast Asian basin. J Geophys Res, 91: 14345–14354

    Article  Google Scholar 

  • Chang Y T, Hsu W L, Tai J H, Tang T Y, Chang M H, Chao S Y. 2010. Cold deep water in the South China Sea. J Oceanogr, 66: 183–190

    Article  Google Scholar 

  • Chao S Y, Shaw P T, Wu S Y. 1996. Deep water ventilation in the South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 43: 445–466

    Article  Google Scholar 

  • Chen H, Xie X, Van R, Vandorpe T, Huang L, Guo L Y, Su M. 2013. Depositional characteristics and spacial distribution of deep-water sedimentary systems on the northwestern middle-lower slope of the Northwest Sub-Basin, South China Sea. Mar Geophys Res, 34: 239–257

    Article  Google Scholar 

  • Chen H, Xie X, Van R, Vandorpe T, Su M, Wang D X. 2014. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea. Mar Geol, 355: 36–53

    Article  Google Scholar 

  • Fang G, Wang Y, Wei Z, Fang Y, Qiao F, Hu X. 2009. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dyn Atmos Oceans, 47: 55–72

    Article  Google Scholar 

  • Holloway G. 1992. Representing topographic stress for large-scale ocean models. J Phys Oceanogr, 22: 1033–1046

    Article  Google Scholar 

  • Holloway G. 2008. Observing global ocean topostrophy. J Geophys Res, 113: C07054, doi: 10.1029/2007JC004635

    Google Scholar 

  • Lan J, Zhang N, Wang Y. 2013. On the dynamics of the South China Sea deep circulation. J Geophys Res, 118: 1206–1210

    Article  Google Scholar 

  • Lan J, Wang Y, Cui F, Zhang N. 2015. Seasonal variation in the South China Sea deep circulation. J Geophys Res, 120: 1682–1690

    Article  Google Scholar 

  • Li L, Qu T. 2006. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. J Geophys Res, 111: C05017, doi: 10.1029/2005JC003164

    Article  Google Scholar 

  • Liu C T, Liu R J. 1988. The deep current in the Bashi Channel. Acta Oceanogr Taiwan, 20: 107–116

    Google Scholar 

  • Liu C J, Du Y, Zhang Q R, Wang D X. 2008. Seasonal variation of subsurface and intermediate water masses in the South China Sea (in Chinese). Oceanol Limnol Sin, 39: 55–64

    Google Scholar 

  • Liu C, Wang D, Chen J, Du Y, Xie Q. 2012. Freshening of the intermediate water of the South China Sea between the 1960s and the 1980s. Chin J Oceanol Limnol, 30: 1010–1015

    Article  Google Scholar 

  • Lüdmann T, Wong H K, Berglar K. 2005. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments. Geophys Res Lett, 32: L05614, doi: 10.1029/2004GL021967

    Article  Google Scholar 

  • Nitani H. 1972. Beginning of the Kuroshio, in Kuroshio. In: Stommel H, Yoshida K, eds. Physical Aspects of the Japan Current. Seattle: University of Washington Press. 129–163

    Google Scholar 

  • Qu T, Du Y, Meyers G, Ishida A, Wang D. 2005. Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys Res Lett, 32: L24609, doi: 10.1029/2005GL024698

    Article  Google Scholar 

  • Qu T, Girton J, Whitehead J A. 2006a. Deepwater overflow through Luzon Strait. J Geophys Res, 111: C01002, doi: 10.1029/2005JC003139

    Article  Google Scholar 

  • Qu T, Du Y, Sasaki H. 2006b. South China Sea throughflow: A heat and freshwater conveyor. Geophys Res Lett, 33: L23617, doi: 10.1029/ 2006GL028350

    Article  Google Scholar 

  • Shao L, Li X, Geng J, Pang X, Lei Y, Qiao P, Wang L, Wang H. 2007. Deep water bottom current deposition in the northern South China Sea. Sci China Ser D-Earth Sci, 50: 1060–1066

    Article  Google Scholar 

  • Shu Y, Xue H, Wang D, Chai F, Xie Q, Yao J, Xiao J. 2014. Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. J Geophys Res, 119: 3012–3028

    Article  Google Scholar 

  • Shu Y, Xue H, Wang D, Chai F, Xie Q, Cai S, Chen R, Chen J, Li J, He Y. 2016. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea. Sci Rep, 6: 24338, doi: 10.1038/srep24338

    Article  Google Scholar 

  • St Laurent L. 2008. Turbulent dissipation on the margins of the South China Sea. Geophys Res Lett, 35: L23615, doi: 10.1029/2008GL035520

    Article  Google Scholar 

  • Stommel H, Arons A B. 1960a. On the abyssal circulation of the world ocean—I. Stationary flow patterns on a sphere. Deep-Sea Res Part I-Oceanogr Res Pap, 6: 140–154

    Google Scholar 

  • Stommel H, Arons A B. 1960b. On the abyssal circulation of the world ocean—II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res Part I-Oceanogr Res Pap, 6: 217–233

    Google Scholar 

  • Tian J, Yang Q, Liang X, Xie L, Hu D, Wang F, Qu T. 2006. Observation of Luzon Strait transport. Geophys Res Lett, 33: L19607, doi: 10.1029/2006GL026272

    Article  Google Scholar 

  • Tian J, Yang Q, Zhao W. 2009. Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr, 39: 3191–3203

    Article  Google Scholar 

  • Tian J, Qu T. 2012. Advances in research on the deep South China Sea circulation. Chin Sci Bull, 57: 3155–3120

    Google Scholar 

  • Wang G, Xie S P, Qu T, Huang R. 2011. Deep South China Sea circulation. Geophys Res Lett, 38: L05601, doi: 10.1029/2010GL046626

    Google Scholar 

  • Wang G, Huang R X, Su J, Chen D. 2012. The effects of thermohaline circulation on wind-driven circulation in the South China Sea. J Phys Oceanogr, 42: 2283–2296

    Article  Google Scholar 

  • Wang J. 1986. Observation of abyssal flows in the Northern South China Sea. Acta Oceanogr Taiwan, 16: 36–45

    Google Scholar 

  • Wang D, Liu X, Wang W, Du Y, Zhou W. 2004. Simulation of meridional overturning in the upper layer of the South China Sea with an idealized bottom topography. Chin Sci Bull, 49: 740–747

    Article  Google Scholar 

  • Wang D, Liu Q Y, Huang R X, Du Y, Qu T. 2006. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys Res Lett, 33: L14605, doi: 10.1029/2006GL026316

    Article  Google Scholar 

  • Xiao J, Xie Q, Liu C J, Chen J, Wang D, Chen M. 2013. A diagnostic model of the South China Sea bottom circulation in consideration of tidal mixing, eddy-induced mixing and topography (in Chinese). Acta Oceanol Sin, 35: 1–13

    Google Scholar 

  • Xiao J, Xie Q, Wang D, Yang L, Shu Y, Liu C, Chen J, Yao J, Chen G. 2016. On the near-inertial variations of meridional overturning circulation in the South China Sea. Ocean Sci. 12: 335–344

    Article  Google Scholar 

  • Xie Q, Xiao J, Wang D, Yu Y. 2013. Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs. Chin Sci Bull, 58: 4000–4011

    Article  Google Scholar 

  • Xu F H, Oey L Y. 2014. State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn, 64: 905–923

    Article  Google Scholar 

  • Yang J, Price J F. 2000. Water-mass formation and potential vorticity balance in an abyssal ocean circulation. J Mar Res, 58: 789–808

    Article  Google Scholar 

  • Yang Q, Tian J, Zhao W. 2010. Observation of Luzon Strait transport in summer 2007. Deep-Sea Res Part I-Oceanogr Res Pap, 57: 670–676

    Article  Google Scholar 

  • Yang Q, Tian J, Zhao W. 2011. Observation of material fluxes through the Luzon Strait. Chin J Oceanol Limnol, 29: 26–32

    Article  Google Scholar 

  • Yang Q, Zhou L, Tian J, Zhao W. 2013. The roles of Kuroshio intrusion and mesoscale eddy in upper mixing in the northern South China Sea. J Coastal Res, 30: 192–198

    Google Scholar 

  • Yang Q, Tian J, Zhao W, Liang X, Zhou L. 2014. Observations of turbulence on the shelf and slope of northern South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 87: 43–52

    Article  Google Scholar 

  • Yu Z, Shen S, McCreary J P, Yaremchuk M, Furue R. 2007. South China Sea throughflow as evidenced by satellite images and numerical experiments. Geophys Res Lett, 34: L01601, doi: 10.1029/2006GL028103

    Google Scholar 

  • Yuan D. 2002. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanol Sin, 21: 187–202

    Google Scholar 

  • Zhang N, Lan J, Cui F. 2014. The shallow meridional overturning circulation of the South China Sea. Ocean Sci Discuss, 11: 1191–1212

    Article  Google Scholar 

  • Zhao W, Zhou C, Tian J, Yang Q, Wang B, Xie L, Qu T. 2014. Deep water circulation in the Luzon Strait. J Geophys Res, 119: 790–804

    Article  Google Scholar 

  • Zheng H B, Yan P. 2012. Deep-water bottom current research in the northern South China Sea. Mar Georesour Geotec, 30: 122–129

    Article  Google Scholar 

  • Zhou C, Zhao W, Tian J, Yang Q, Qu T. 2014. Variability of the deepwater overflow in the Luzon Strait. J Phys Oceanogr, 44: 2972–2986

    Article  Google Scholar 

  • Zhu M, Graham S, Pang X, McHargue T. 2010. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Mar Pet Geol, 27: 307–319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Xiao, J., Shu, Y. et al. Progress on deep circulation and meridional overturning circulation in the South China Sea. Sci. China Earth Sci. 59, 1827–1833 (2016). https://doi.org/10.1007/s11430-016-5324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5324-6

Keywords

Navigation