Skip to main content
Log in

Remote sensing-based artificial surface cover classification in Asia and spatial pattern analysis

  • Research Paper
  • Special Topic: GlobeLand30 remote sensing mapping innovation and large data analysis
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at continental scale, it is hard to evaluate the impacts of urbanization on regional climate, ecosystem processes and global environment. This study constructed a hierarchical classification system for artificial surfaces, promoted a remote sensing method to retrieve subpixel components of artificial surfaces from 30-m resolution satellite imageries (GlobeLand30) and developed a series of data products of high-precision urban built-up areas including impervious surface and vegetation cover in Asia in 2010. Our assessment, based on multisource data and expert knowledge, showed that the overall accuracy of classification was 90.79%. The mean relative error for the impervious surface components of cities was 0.87. The local error of the extracted information was closely related to the heterogeneity of urban buildings and vegetation in different climate zones. According to our results, the urban built-up area was 18.18×104 km2, accounting for 0.59% of the total land surface areas in Asia; urban impervious surfaces were 11.65×104 km2, accounting for 64.09% of the total urban built-up area in Asia. Vegetation and bare soils accounted for 34.56% of the urban built-up areas. There were three gradients: a concentrated distribution, a scattered distribution and an indeterminate distribution from east to west in terms of spatial pattern of urban impervious surfaces. China, India and Japan ranked as the top three countries with the largest impervious surface areas, which respectively accounted for 32.77%, 16.10% and 11.93% of the urban impervious surface area of Asia. We found the proportions of impervious surface and vegetation cover within urban built-up areas were closely related to the economic development degree of the country and regional climate environment. Built-up areas in developed countries had relatively low impervious surface and high public green vegetation cover, with 50–60% urban impervious surfaces in Japan, South Korea and Singapore. In comparison, the proportion of urban impervious surfaces in developing countries is approaching or exceeding 80% in Asia. In general, the composition and spatial patterns of built-up areas reflected population aggregation and economic development level as well as their impacts on the health of the environment in the sub-watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold C L, Gibbons C J. 1996. Impervious surface coverage: The emergence of a key environmental indicator. J Am Plann Assoc, 62: 243–258

    Article  Google Scholar 

  • Bierwagen B G, Theobald D M, Pyke C R, Choate A, Groth P, Thomas J V, Morefield P. 2010. National housing and impervious surface scenarios for integrated climate impact assessments. Proc Natl Acad Sci USA, 10: 20887–20892

    Article  Google Scholar 

  • Boysen L R, Brovkin V, Arora V K, Cadule P, Noblet-Ducoudré N, Kato E, Pongratz J, Gayler V. 2014. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle. Earth Syst Dynam, 5: 309–319

    Article  Google Scholar 

  • Cao X, Chen J, Chen L J, Liao A P, Sun F D, Li Y, Li L, Lin Z H, Pang Z G, Chen J, He C Y, Peng S. 2014. Preliminary analysis of the spatial pattern and fluctuations of global land surface water. Sci China Earth Sci, 44: 1661–1670

    Google Scholar 

  • Chen J, Ban Y F, Li S N. 2014a. China: Open access to Earth land-cover map. Nature, 514: 434

    Article  Google Scholar 

  • Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, Peng S, Han G, Zhang H W, He C Y, Wu H, Lu M. 2014b. Concepts and key techniques for 30 m global land cover mapping (in Chinese). Acta Geodaetica Cartograph Sin, 43: 551–557

    Google Scholar 

  • Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, He C Y, Han G, Peng S, Lu M, Zhang W W, Tong X H, Mills J. 2015. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J-Photogramm Remote Sens, 103: 7–27

    Article  Google Scholar 

  • Elvidge C D, Tuttle B T, Sutton P C, Baugh K E, Howard A T, Milesi C, Bhaduri B L, Nemani R. 2007. Global distribution and density of constructed impervious surfaces. Sensors, 7: 1962–1979

    Article  Google Scholar 

  • Grimm N B, Faeth S H, Golubiewski N E, Redman C L, Wu J G, Bai X M, Briggs J M. 2008. Global change and the ecology of cities. Science, 319: 756–760

    Article  Google Scholar 

  • Grimmond S. 2007. Urbanization and global environmental change: Local effects of urban warming. Geogr J, 173: 83–88

    Article  Google Scholar 

  • Hodgson M E, Jensen J R, Schmidt L, Schill S, Davis B. 2003. An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sens Environ, 84: 295–308

    Article  Google Scholar 

  • Hu X F, Weng Q H. 2009. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens Environ, 113: 2089–2102

    Article  Google Scholar 

  • Kuang W H. 2012a. Evaluating impervious surface growth and its impacts on water environment in Beijing-Tianjin-Tangshan metropolitan area. J Geogr Sci, 22: 535–547

    Article  Google Scholar 

  • Kuang W H. 2012b. Spatio-temporal patterns of intra-urban land use change in Beijing, China between 1984 and 2008. J Geogr Sci, 22: 210–220

    Article  Google Scholar 

  • Kuang W H. 2012c. Digital Reconstruction, Analysis and Simulation of the Spatio-Temporal Information of Urban Land Use (in Chinese). Beijing: Science Press

    Google Scholar 

  • Kuang W H, Liu J Y, Zhang Z X, Lu D S, Xiang B. 2013. Spatiotemporal dynamics of impervious surface areas across China during the early 21st century. Chin Sci Bull, 58: 1691–17011

    Article  Google Scholar 

  • Kuang W H, Chi W F, Lu D S, Dou Y Y. 2014. A comparative analysis of megacity expansions in China and the US: Patterns, rates and driving forces. Landscape Urban Plan, 132: 121–135

    Article  Google Scholar 

  • Kuang W H, Liu Y, Dou Y Y, Chi W F, Chen G S, Gao C F, Yang T R, Liu J Y, Zhang R H. 2015a. What are hot and what are not in an urban landscape: Quantifying and explaining the land surface temperature pattern in Beijing, China. Landsc Ecol, 30: 357–373

    Article  Google Scholar 

  • Kuang W H, Dou Y Y, Zhang C, Chi W F, Liu A L, Zhang R H, Liu J Y. 2015b. Quantifying the heat flux regulation of metropolitan land-use/land-cover components by coupling remote sensing-modelling with in situ measurement. J Geophys Res-Atmos, 120: 113–130

    Article  Google Scholar 

  • Kuang W H, Chi W F, Lu D S. 2015c. Remote Sensing Analysis and Ecological Regulation of the Thermal Environment of Urban Surfaces (in Chinese). Beijing: Science Press

    Google Scholar 

  • Liao A P, Chen L J, Chen J, He C Y, Cao X, Chen J, Peng S, Sun F D, Gong P. 2014. High-resolution remote sensing mapping of global land surface water. Sci China Earth Sci, 44: 1634–1645

    Google Scholar 

  • Liu J Y, Zhang Z X, Xu X L, Kuang W H, Zhou W C, Zhang S W, Li R D, Yan C Z, Yu D S, Wu S X, Jiang N. 2010. Spatial patterns and driving forces of land use change in China during the early 21st century. J Geogr Sci, 20: 483–494

    Article  Google Scholar 

  • Liu J Y, Kuang W H, Zhang Z X, Xu X L, Qin Y W, Ning J, Zhou W C, Zhang S W, Li R D, Yan C Z, Wu S X, Shi X Z, Jiang N, Yu D S, Pan X Z, Chi W F. 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J Geogr Sci, 24: 195–21

    Article  Google Scholar 

  • Liu Z F, He C Y, Zhou Y Y, Wu J G. 2014. How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landsc Ecol, 29: 763–771

    Article  Google Scholar 

  • Lu D D. 2014. The framework document of “Future Earth” and the development of Chinese geographical science: The foresight of Academician HUANG Bingwei’s statement (in Chinese). Acta Geogr Sin, 69: 1043–1051

    Google Scholar 

  • Lu D S, Weng Q H. 2004. Spectral mixture analysis of the urban landscapes in Indianapolis with Landsat ETM+ imagery. Photogramm Eng Rem Sens, 70: 1053–1062

    Article  Google Scholar 

  • Lu D S, Tian H Q, Zhou G M, Ge H L. 2008. Regional mapping of human settlements in southeastern China with multisensory remotely sensed data. Remote Sens Environ, 112: 3668–3679

    Article  Google Scholar 

  • Lu D S, Li G Y, Moran E. 2014a. Current situation and needs of change detection techniques. Int J Image Data Fusion, 5: 13–38

    Article  Google Scholar 

  • Lu D S, Li G Y, Kuang W H, Moran E. 2014b. Methods to extract impervious surface areas from satellite images. Int J Digit Earth, 7: 93–112

    Article  Google Scholar 

  • Messerli B, Grosjean M, Hofer T, Núñez L, Pfister C. 2000. From nature- dominated to human-dominated environmental changes. IGU Bull, 50: 23–38

    Google Scholar 

  • Nowak D J, Greenfield E J. 2012. Tree and impervious cover in the United States. Landscape Urban Plan, 107: 21–30

    Article  Google Scholar 

  • Schneider A, Friedl M A, Potere D. 2009. A new map of global urban extent from MODIS satellite data. Environ Chem Lett, 4: 940–941

    Google Scholar 

  • Slonecker E T, Jennings D B, Garofalo D. 2001. Remote sensing of impervious surface: A review. Remote Sens Rev, 20: 227–255

    Article  Google Scholar 

  • Sterling S M, Ducharne A, Polcher J. 2013. The impact of global land-cover change on the terrestrial water cycle. Nat Clim Change, 3: 385–390

    Article  Google Scholar 

  • Wu J G, David J L. 2002. A spatially explicit hierarchical approach to modeling complex ecological systems: Theory and applications. Ecol Model, 153: 7–26

    Article  Google Scholar 

  • Wu J G. 2013. Landscape sustainability science: Ecosystem services and human well-being in changing landscape. Landsc Ecol, 28: 999–1023

    Article  Google Scholar 

  • Xian G, Crane M. 2005. Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sens Environ, 97: 203–215

    Article  Google Scholar 

  • Xian G, Homer C. 2010. Updating the 2001 national land cover database impervious surface products to 2006 using Landsat imagery change detection methods. Remote Sens Environ, 114: 1676–1686

    Article  Google Scholar 

  • Yan Y, Kuang W H, Zhang C, Chen C B. 2015. Impacts of impervious surface expansion on soil organic carbon: A spatially explicit study. Sci Rep, 5: 17905. doi: 10.1038/srep17905

    Article  Google Scholar 

  • Yan Y, Zhang C, Hu Y F, Kuang W H. 2016. Urban land-cover change and its impact on the ecosystem carbon storage in a dryland city. Remote Sens, 8: 6, doi: 10.3390/rs801000

    Article  Google Scholar 

  • Yang L, Huang C Q, Homer C G, Wylie B K, Coan M J. 2003. An approach for mapping large-area impervious surfaces: Synergistic use of landsat-7 ETM+ and high spatial resolution imagery. Can J Remote Sens, 29: 230–240

    Article  Google Scholar 

  • Zhang C, Tian H Q, Pan S F, Liu M L, Lockaby G, Schilling E B, Stanturf J. 2008. Effects of forest regrowth and urbanization on ecosystem carbon storage in a rural-urban gradient in the Southeastern United States. Ecosystems, 11: 1211–1222

    Article  Google Scholar 

  • Zhang C, Tian H Q, Chen, G S, Chappelka A, Xu X F, Ren W, Hui D F, Liu M L, Lu C Q, Pan S F, Lockaby G. 2012. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ Pollut, 164: 89–101

    Article  Google Scholar 

  • Zhang C, Tian H Q, Pan S F, Lockaby G, Chappelka A. 2014. Multi-factor controls on terrestrial carbon dynamics in urbanized areas. Biogeosciences, 11: 7107–7124

    Article  Google Scholar 

  • Zhang C, Chen Y L, Lu D S. 2015a. Mapping land-cover distribution in arid/semiarid urban landscapes with Landsat Thematic Mapper imagery. Int J Remote Sens, 36: 4483–4500

    Article  Google Scholar 

  • Zhang C, Chen Y L, Lu D S. 2015b. Detecting fractional land-cover change in arid and semiarid urban landscapes with multitemporal Landsat Thematic Mapper imagery. Gisci Remote Sens, 52: 700–722

    Article  Google Scholar 

  • Zhao L, Lee X H, Smith R B, Oleson K. 2014. Strong contributions of local background climate to urban heat islands. Nature, 511: 216–219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenHui Kuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, W., Chen, L., Liu, J. et al. Remote sensing-based artificial surface cover classification in Asia and spatial pattern analysis. Sci. China Earth Sci. 59, 1720–1737 (2016). https://doi.org/10.1007/s11430-016-5295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5295-7

Keywords

Navigation