Skip to main content
Log in

Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-based COUPMODEL model, including the interaction between soil temperature and moisture under freeze-thaw cycles. Meteorological, ground temperature and moisture data from different depths within the active layer were used to calibrate and validate the model. The results indicate that the calibrated model satisfactorily simulates the soil temperatures from the top to the bottom of the soil layers as well as the moisture content of the active layer in permafrost regions. The simulated soil heat flux at depths of 0 to 20 cm was consistent with the monitoring data, and the simulations of the radiation balance components were reasonable. Energy consumed for phase change was estimated from the simulated ice content during the freeze/thaw processes from 2007 to 2008. Using this model, the active layer thickness and the energy consumed for phase change were predicted for future climate warming scenarios. The model predicts an increase of the active layer thickness from the current 330 cm to approximately 350–390 cm as a result of a 1–2°C warming. However, the effect active layer thickness of more precipitation is limited when the precipitation is increased by 20%–50%. The COUPMODEL provides a useful tool for predicting and understanding the fate of permafrost in the QXP under a warming climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexeev V A, Nicolsky D J, Romanovsky V E, Lawrence D M. 2007. An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophys Res Lett, 34: L090502

    Article  Google Scholar 

  • Allison I, Barry R G, Goodison B E. 2001. Climate and Cryosphere (CLIC) Project Science and Co-ordination Plan (Version 1), WCRP-114, WMO/TD No.1053, 1–96

    Google Scholar 

  • Brown J, Romanovsky V, Vladimir E. 2008. Report from the International permafrost association: State of permafrost in the first decade of the 21st Century. Permafrost Periglacial Process, 19: 255–260

    Article  Google Scholar 

  • Buteau S, Fortier R, Delisle G, Allard M. 2004. Numerical simulations of the impacts of climate warming on a permafrost mound. Permafrost Periglacial Process, 15: 41–57

    Article  Google Scholar 

  • Cheng G D, Wu T H. 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res, 112: 1–10

    Google Scholar 

  • Cheng G D, Zhao L. 2000. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau (in Chinese). Quat Sci Rev, 20: 521–531

    Google Scholar 

  • Cheng G D. 1990. Recent development of geocryological study in China (in Chinese). Acta Geogr Sin, 45: 220–223

    Google Scholar 

  • Cheng Z G, Liu X D, Fan G Z, Bai A J, Wang B Z. 2011. Spatiotemporal distribution of climate change over the Qinghai-Tibetan Plateau in 21st Century (in Chinese). Arid Zone Res, 28: 669–676

    Article  Google Scholar 

  • Demchenko P F, Eliseev A V, Arzhanov M M, Mokhov I I. 2006. Impact of global warming rate on permafrost degradation. Izv Atmos Ocean Phy, 42: 32–39

    Article  Google Scholar 

  • Eckersten H, Blomback K, Katterer T, Nymana P. 2001. Modelling C, N, water and heat dynamics in winter wheat under climate change in southern Sweden. Agric Ecosyst Environ, 86: 221–235

    Article  Google Scholar 

  • Franchini M, Pacciani M. 1991. Comparative analysis of several conceptual rainfall-runoff models. J Hydrol, 122: 161–219

    Article  Google Scholar 

  • Gao Z Q, Chae N, Kim J, Hong J, Choi T, Lee H. 2004. Modeling of surface energy partitioning, surface temperature and soil wetness in the Tibetan prairie using the simple biosphere model 2(SiB2). J Geophys Res, 102: D06102

    Google Scholar 

  • Guglielmin M, Dramis F. 1999. Permafrost as a climatic indicator in northern Victoria Land, Antarctica. Ann Glaciol, 29: 131–135

    Article  Google Scholar 

  • Hansson K, Simunek J, Mizoguchi M, Lundina L, Van Genuchten M. 2004. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications. Vadose Zone J, 3: 693–704

    Google Scholar 

  • Harlan R L. 1973. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour Res, 9: 1314–1323

    Article  Google Scholar 

  • Henry K, Smith M. 2001. A model-based map of ground temperatures for the permafrost regions of Canada. Permafrost Periglacial Process, 12: 389–398

    Article  Google Scholar 

  • Hinkel K M, Nelson F E. 2003. Spatial and temporal patterns of active layer thickness at circumpolar active layer monitoring (CALM) sites in northern Alaska, 1995–2000. J Geophys Res, 108: 8168

    Article  Google Scholar 

  • Hollesen J, Elberling B, Jansson P E. 2011. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland. Glob Change Biol, 17: 911–926

    Article  Google Scholar 

  • Hu G J, Zhao L, Li R, Wu T H, Xiao Y, Jiao K Q, Qiao Y P, Jiao Y L. 2013. The Water-thermal characteristics of frozen soil under freezethaw based on CoupModel (in Chinese). Sci Geogr Sin, 33: 356–362

    Google Scholar 

  • Hu H P, Ye B S, Zhou Y H, Tian F Q. 2006. A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet. Sci China Ser D-Earth Sci, 49: 1311–1322

    Article  Google Scholar 

  • Ikard S J, Gooseff M N, Barrett J E, Takacs-Vesbach C. 2009. Thermal characterization of active layer across a soil moisture gradient in the McMurdo dry valleys, Antarctica. Permafrost Periglacial Process, 20: 389–398

    Article  Google Scholar 

  • IPCC. 2007. Climate Change Synthesis Report. Cambridge: Cambridge University Press

    Google Scholar 

  • Jansson P E, Karlberg L. 2004. Theory and practice of coupled heat and mass transfer model for soil-plant-atmosphere system (in Chinese). In: Zhang H J, Cheng J H, Wang W. Translation. Beijing: Science Press

    Google Scholar 

  • Jansson P E, Moon D. 2001. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environ Modell Softw, 16: 37–46

    Article  Google Scholar 

  • Jiang Y Y, Zhuang Q L, O’Donnell Q L. 2012. Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model. J Geophys Res, 117: D11110

    Article  Google Scholar 

  • Jiang Z H, Zhang X, Wang J. 2008. Projection of climate change in China in the 21st century by IPCC-AR4 Models. Geogr Res, 27: 787–799

    Google Scholar 

  • Kane D L, Hinzman L D, Zarling J P. 1991. Thermal response of the active layer to climate warming in a permafrost environment. Cold Reg Sci Technol, 19: 111–122

    Article  Google Scholar 

  • Koven C D, Ringeval B, Friedlingstein P, Ciaisa P, Cadulea P, Khvorostyanovd D, Krinnere G, Tarnocaif C. 2011. Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci USA, 108: 14769–14774

    Article  Google Scholar 

  • Li R, Zhao L, Ding Y J, Wu T H, Xiao Y, Du E J, Liu G Y, Qiao Y P. 2012. Temporal and spatial variations of the active layer along the Qinghai- Tibet Highway in a permafrost region. Chin Sci Bull, 57: 2867–2871

    Google Scholar 

  • Liu X D, Chen B D. 2000. Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol, 20: 1729–1742

    Article  Google Scholar 

  • Lunardini V J. 1996. Climatic warming and the degradation of warm permafrost. Permafrost Periglacial Process, 7: 311–320

    Article  Google Scholar 

  • Luo D L, Jin H J, Marchenko S, Romanovsky V. 2014. Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model. Sci China Earth Sci, 57: 1834–1845

    Article  Google Scholar 

  • Luo S Q, Lü S H, Zhang Y, Hu Z Y, Ma Y M, Li S S, Shang Y L. 2008. Simulation analysis on land surface process of BJ site of central Tibetan Plateau using CoLM (in Chinese). Plateau Meteorol, 27: 259–271

    Google Scholar 

  • Ma Z G, Wei H L, Fu C B. 1999. Progress in the research on the relationship between soil moisture and climate change (in Chinese). Adv Earth Sci, 14: 299–305

    Google Scholar 

  • McGechan M B, Graham R, Vinten A J A, Douglasc J T, Hoodad P S. 1997. Parameter selection and testing the soil water model SOIL. J Hydrol, 195: 312–334

    Article  Google Scholar 

  • Nan Z T, Li S X, Cheng G D. 2005. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Sci China Ser D-Earth Sci, 48: 797–804

    Article  Google Scholar 

  • Nassar I N, Horton R, Flerchinger G N. 2000. Simultaneous heat and mass transfer in soil columns exposed to freezing/thawing conditions. Soil Sci, 165: 208–216

    Article  Google Scholar 

  • Nelson F E. 2003. (Un) frozen in time. Science, 299: 1673–1675

    Article  Google Scholar 

  • Nicolsky D J, Romanovsky V E, Alexeev V A, Lawrence D M. 2007. Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys Res Lett, 34: L080501

    Article  Google Scholar 

  • Niu L, Ye B S, Li J, Sheng Y. 2011. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China. Sci China Earth Sci, 4: 615–624

    Article  Google Scholar 

  • Oelke C, Zhang T J. 2004. A model study of circum-arctic soil temperature. Permafrost Periglacial Process, 15: 103–121

    Article  Google Scholar 

  • Pavlov A V. 1994. Current change of climate and permafrost in the Arctic and sub-Arctic of Russia. Permafrost Periglacial Process, 5: 101–110

    Article  Google Scholar 

  • Poutou E, Krinner G, Genthon C, de Noblet-Ducoudré N. 2004. Role of soil freezing in future boreal climate change. Clim Dynam, 23: 621–639

    Article  Google Scholar 

  • Riseborough D W, Shiklomanov N I, Etzelmuller B, Gruber S, Marchenko S. 2008. Recent advances in permafrost modeling. Permafrost Periglacial Process, 19: 137–156

    Article  Google Scholar 

  • Riseborough D W. 2002. The mean annual temperature at the top of permafrost, the TTOP model, and the effect of unfrozen water. Permafrost Periglacial Process, 13: 137–143

    Article  Google Scholar 

  • Scherler M, Hauck C, Hoelzle M, Stähli M, Völksch I. 2010. Meltwater Infiltration into the Frozen Active Layer at an Alpine Permafrost Site. Permafrost Periglacial Process, 21: 325–334

    Article  Google Scholar 

  • Shoop S A, Bigl S R. 1997. Moisture migration during freeze and thaw of unsaturated soils: Modeling and large scale experiments. Cold Reg Sci Technol, 25: 33–45

    Article  Google Scholar 

  • Smith L C, Sheng Y, MacDonald G M, Hinzman L D. 2005. Disappearing arctic lakes. Science, 308: 1429

    Article  Google Scholar 

  • Smith M W, Riseborough D W. 2002. Climate and the limits of permafrost: A zonal analysis. Permafrost Periglacial Process, 13: 1–15

    Article  Google Scholar 

  • Sridhar V, Elliott R L, Chen F, Brotzge J A. 2002. Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma. J Geophys Res, 107(D20): ACL 3-1-ACL 3–18

    Google Scholar 

  • Stendel M, Christensen J H. 2002. Impact of global warming on permafrost conditions in a coupled GCM. Geophys Res Lett, 29: 1632

    Article  Google Scholar 

  • Sturm M, Douglas T, Racine C, Liston G E. 2005. Changing snow and shrub conditions affect albedo with global implications. J Geophys Res, 110: G01004

    Google Scholar 

  • Sun L C, Zhao L, Li R, Yao J M, Liu Y, Qiao Y P, Jiao K Q. 2014. Effects of precipitation on the permafrost ground surface energy fluxes. J Longdong Univ, 25: 41–46

    Google Scholar 

  • Tang M C, Shen Z B, Chen Y Y. 1979. On climatic characteristics of the Xizang Plateau monsoon (in Chinese). Acta Geogr Sin, 34: 33–42

    Google Scholar 

  • Tian H, Wei C, Wei H, Zhou J Z. 2014. Freezing and thawing characteristics of frozen soils: Bound water content and hysteresis phenomenon. Cold Reg Sci Technol, 103: 74–81

    Article  Google Scholar 

  • Vinnikov K Y, Robock A, Speranskaya N A. 1996. Scales of temporal and spatial variability of mid-latitude soil moisture. J Geophys Res, 101: 7163–7174

    Article  Google Scholar 

  • Wang C H, Shi R. 2007. Simulation of the land surface processes in the Western Tibetan Plateau in summer (in Chinese). J Glaciol Geocryol, 29: 73–81

    Google Scholar 

  • Wang Y B, Gao Z Y, Wen J, Liu G H, Geng D, Li X B. 2014. Effect of a thermokarst lake on soil physical properties and infiltration processes in the permafrost region of the Qinghai-Tibet Plateau, China. Sci China Earth Sci, 57: 2357–2365

    Article  Google Scholar 

  • Wang Q C, Li L, Li D L, Qin N S, Wang Z Y, Zhu X D, Shi X H. 2005. Response of permafrost over Qinghai Plateau to climate warming (in Chinese). Plateau Meteorol, 24: 708–713

    Google Scholar 

  • Wei Z, Jin H J, Zhang J M, Yu S P, Han X J, Ji Y J, He R X, Chang X L. 2011. Prediction of permafrost changes in Northeastern China under a changing climate. Sci China Earth Sci, 6: 924–935

    Article  Google Scholar 

  • Wu Q, Zhang T J. 2008. Recent permafrost warming on the Qinghai- Tibetan Plateau. J Geophys Res, 113: 1–22

    Google Scholar 

  • Wu Q B, Cheng G D, Ma W, Niu F, Sun Z Z. 2006. Technical approaches on permafrost thermal stability for Qinghai-Tibet Railway. Geomech Geoeng, 1: 119–127

    Article  Google Scholar 

  • Wu Q B, Liu Y Z. 2004. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau. Cold reg Sci Technol, 38: 85–92

    Article  Google Scholar 

  • Wu Q B, Shen Y P, Shi B. 2003. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau (in Chinese). J Glaciol Geocryol, 25: 250–255

    Google Scholar 

  • Wu S H, Jansson P E, Zhang X Y. 2011. Modeling temperature, moisture and surface heat balance in bare soil under seasonal frost conditions in China. Eur J Soil Sci, 62: 780–796

    Article  Google Scholar 

  • Wu S H, Jansson P E, Kolari P. 2012. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal scots pine ecosystem. Agr Forest Meteorol, 156: 85–103

    Article  Google Scholar 

  • Wu S H, Jansson P E, Kolari P. 2011. Modeling seasonal course of carbon fluxes and evapotranspiration in response to low temperature and moisture in a boreal Scots pine ecosystem. Ecol, 222: 3103–3119

    Google Scholar 

  • Wu J C, Sheng Y, Wu Q B, Wen Z. 2010. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau. Sci China Earth Sci, 1: 150–158

    Google Scholar 

  • Xiao Y, Zhao L, Dai Y J, Li R, Pang Q Q, Yao J M. 2013. Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau. Cold Reg Sci Technol, 87: 68–77

    Article  Google Scholar 

  • Xiao Y, Zhao L, Li R, Yao J M. 2011. Seasonal variation characteristics of surface energy budget components in permafrost regions of Northern Tibetan Plateau (in Chinese). J Glaciol Geocryol, 33: 1033–1037

    Google Scholar 

  • Xiao Y. 2013. A Study on Water-Heat Processes and Simulation along the Qinghai-Tibet Highway in Permafrost Regions (in Chinese. Doctoral Dissertation. Chinese Academy of Sciences

    Google Scholar 

  • Yang J P, Ding Y J, Chen R S. 2004. Permafrost change and its effect on eco-environment in the source regions of the Yangtze and Yellow Rivers (in Chinese). J Mt Sci, 22: 278–285

    Google Scholar 

  • Yang Y, Chen R S, Ji X B, Qing W W, Liu J F, Han C T. 2010. Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China (in Chinese). Adv Water Sci, 21: 30–34

    Google Scholar 

  • Yao J M, Zhao L, Ding Y J, Gu L L, Jiao K Q, Qiao Y P, Wang Y X. 2008. The surface energy budget and evapotranspiration in the Tanggula region on the Tibetan Plateau. Cold Reg Sci Technol, 52: 326–340

    Article  Google Scholar 

  • Zhang S L, Lövdahl L, Grip H, Jansson P E, Tong Y. 2007. Modelling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau. Soil Till Res, 100: 311–319

    Google Scholar 

  • Zhang T J. 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev Geophys, 43: RG4002

    Google Scholar 

  • Zhang Y W, Lü S H, Li D L, Huang J. 2003. Numerical simulation of freezing soil process on Qinghai-Xizang Plateau in early winter (in Chinese). Plateau Meteorol, 22: 471–477

    Google Scholar 

  • Zhao L, Li R, Ding Y J. 2008. Simulation on the soil water-thermal characteristics of the active layer in tanggula range (in Chinese). J Glaciol Permafrost Eng, 30: 930–937

    Google Scholar 

  • Zhao L, Ping C L, Yang D Q, Cheng G D, Ding Y J, Liu S Y. 2004. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China. Global Planet Change, 43: 19–31

    Article  Google Scholar 

  • Zhao L, Wu Q B, Marchenko S S, Sharkhuu N. 2010. Thermal state of permafrost and active layer in Central Asia during the International Polar Year, Permafrost Periglacial Process, 21: 198–207

    Article  Google Scholar 

  • Zhao L. 2004. The freezing-thawing processes of active layer and changes of seasonally frozen ground on the Tibetan plateau (in Chinese). Doctoral Dissertation. Chinese Academy of Sciences

    Google Scholar 

  • Zhou J, Kinzelbach W, Cheng G D, Zhang W, He X B, Ye B S. 2013. Monitoring and modelling the influence of snow pack and organic soil on a permafrost active layer, Qinghai-Tibetan Plateau of China. Cold Reg Sci Technol, 90-91: 38–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Zhao, L., Wu, X. et al. Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau. Sci. China Earth Sci. 58, 2309–2326 (2015). https://doi.org/10.1007/s11430-015-5197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5197-0

Keywords

Navigation