Skip to main content
Log in

Radioactive source terms for the Fukushima nuclear accident

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A large amount of radioactivity was released into the environment after the Fukushima nuclear accident (FNA) in Japan in 2011. This radioactivity had a significant impact on the global environment, and there was much public concern about its effects. The subsequent assessment of the FNA and the environmental remediation required are proving to be long and complicated tasks. The assessments are based on the radioactive source terms for the FNA, which determine the level of damage caused by the nuclear accident. We investigated the radioactive source terms from three aspects: the amount and composition of the radionuclides; the activity and atomic ratio of the radionuclides; and comparison with other historical events. The total amount of radioactivity, excluding the radioactive noble gases (85Kr and 133Xe), released by the FNA was about 10% of that released by the Chernobyl nuclear accident in 1986 and <1‰ of the global fallout from the atmosphere nuclear explosion. However, the FNA was the most serious nuclear accident in terms of radioactive pollution of the marine environment. The recovery actions carried out after the FNA have been evaluated and the environmental impacts of the FNA are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aarkrog A. 2003. Input of anthropogenic radionuclides into the World Ocean. Deep-Sea Res Part II-Top Stud Oceanogr, 50: 2597–2606

    Article  Google Scholar 

  • Achim P, Monfort M, Le Petit G, et al. 2012. Analysis of radionuclide releases from the Fukushima Dai-ichi nuclear power plant accident part II. Pure Appl Geophys, 171: 645–667

    Article  Google Scholar 

  • Ahlswede J, Hebel S, Ross J O, et al. 2013. Update and improvement of the global krypton-85 emission inventory. J Environ Radioact, 115: 34–42

    Article  Google Scholar 

  • Akahane K, Yonai S, Fukuda S, et al. 2012. The Fukushima Nuclear Power Plant accident and exposures in the environment. Environmentalist, 32: 136–143

    Article  Google Scholar 

  • Bailly du Bois P, Laguionie P, Boust D, et al. 2012. Estimation of marine source-term following Fukushima Dai-ichi accident. J Environ Radioact, 114: 2–9

    Article  Google Scholar 

  • Bailly du Bois P B, Garreau P, Laguionie P, et al. 2014. Comparison between modelling and measurement of marine dispersion, environmental half-time and 137Cs inventories after the Fukushima Daiichi accident. Ocean Dynam, 64: 361–383

    Article  Google Scholar 

  • Blandford E D, Ahn J. 2012. Examining the nuclear accident at Fukushima Daiichi. Elements, 8: 189–194

    Article  Google Scholar 

  • Bowyer T W, Biegalski S R, Cooper M, et al. 2011. Elevated radioxenon detected remotely following the Fukushima nuclear accident. J Environ Radioact, 102: 681–687

    Article  Google Scholar 

  • Bu W, Fukuda M, Zheng J, et al. 2014a. Release of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant accident to the marine environment was negligible. Environ Sci Technol, 48: 9070–9078

    Article  Google Scholar 

  • Bu W, Zheng J, Aono T, et al. 2013. Vertical distributions of plutonium isotopes in marine sediment cores off the Fukushima coast after the Fukushima Dai-ichi Nuclear Power Plant accident. Biogeosciences, 10: 2497–2511

    Article  Google Scholar 

  • Bu W, Zheng J, Guo Q, et al. 2013. A method of measurement of 239Pu, 240Pu, 241Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples. Environ Sci Technol, 48: 534–541

    Article  Google Scholar 

  • Bu W, Zheng J, Guo Q, et al. 2014b. Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples. J Chromatogr A, 1337: 171–178

    Article  Google Scholar 

  • Bu W, Zheng J, Guo Q, et al. 2015. Temporal distribution of plutonium isotopes in marine sediments off Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident. J Radioanal Nucl Chem, 303: 1151–1154

    Article  Google Scholar 

  • Buesseler K. 2014. Fukushima and ocean radioactivity. Oceanography, 27: 92–105

    Article  Google Scholar 

  • Buesseler K O, Jayne S R, Fisher N S, et al. 2012. Fukushima-derived radionuclides in the ocean and biota off Japan. Proc Natl Acad Sci USA, 109: 5984–5988

    Article  Google Scholar 

  • Burns P C, Ewing R C, Navrotsky A. 2012. Nuclear fuel in a reactor accident. Science, 335: 1184–1188

    Article  Google Scholar 

  • Casacuberta N, Masqué P, Garcia-Orellana J, et al. 2013. 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident. Biogeosciences, 10: 3649–3659

    Article  Google Scholar 

  • Cervone G, Franzese P. 2014. Source Term Estimation for the 2011 Fukushima Nuclear Accident. In: Cervone G, Lin J, Waters N, eds. Data Mining for Geoinformatics Methods and Applications. New York: Springer. 49–64

    Chapter  Google Scholar 

  • Charette M A, Breier C F, Henderson P B, et al. 2013. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident. Biogeosciences, 10: 2159–2167

    Article  Google Scholar 

  • Chino M, Nakayama H, Nagai H, et al. 2011. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol, 48: 1129–1134

    Article  Google Scholar 

  • Christoudias T, Lelieveld J. 2013. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmos Chem Phys, 13: 1425–1438

    Article  Google Scholar 

  • de Vismes Ott A, Gurriaran R, Cagnat X, et al. 2013. Fission product activity ratios measured at trace level over France during the Fukushima accident. J Environ Radioact, 125: 6–16

    Article  Google Scholar 

  • Dietze H and Kriest I. 2012. 137Cs off Fukushima Dai-ichi, Japan-model based estimates of dilution and fate. Ocean Sci, 8: 319–332

    Article  Google Scholar 

  • Doi T, Masumoto K, Toyoda A, et al. 2013. Anthropogenic radionuclides in the atmosphere observed at Tsukuba: Characteristics of the radionuclides derived from Fukushima. J Environ Radioact, 122: 55–62

    Article  Google Scholar 

  • Estournel C, Bosc E, Bocquet M, et al. 2012. Assessment of the amount of cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters. J Geophys Res, 117: C11014

  • Evangeliou N, Balkanski Y, Cozic A, et al. 2014. How “lucky” we are that the Fukushima disaster occurred in early spring: Predictions on the contamination levels from various fission products released from the accident and updates on the risk assessment for solid and thyroid cancers. Sci Total Environ, 500: 155–172

    Article  Google Scholar 

  • Evrard O, Pointurier F, Onda Y, et al. 2014. Novel insights into Fukushima nuclear accident from isotopic evidence of plutonium spread along coastal rivers. Environ Sci Technol, 48: 9334–9340

    Article  Google Scholar 

  • Ginzburg H, Reis E. 1991. Consequences of the nuclear power plant accident at Chernobyl. Public Health Rep, 106: 32–40

    Google Scholar 

  • Guilderson T, Tumey S, Brown T, et al. 2013. The 129-Iodine content of subtropical Pacific waters: Impact of Fukushima and other anthropogenic 129I sources. Biogeosciences, 10: 19935–19968

    Article  Google Scholar 

  • Hamada N, Ogino H. 2012. Food safety regulations: What we learned from the Fukushima nuclear accident. J Environ Radioact, 111: 83–99

    Article  Google Scholar 

  • Hirose K. 2012. 2011 Fukushima Dai-ichi nuclear power plant accident: Summary of regional radioactive deposition monitoring results. J Environ Radioact, 111: 13–17

    Article  Google Scholar 

  • Hirose K, Igarashi Y, Aoyama M, et al. 2001. Long-term trends of plutonium fallout observed in Japan. In: A Kudo, ed. Radioactivity in the Environment. New York: Elsevier. 251–266

    Google Scholar 

  • Honda M C, Aono T, Aoyama M, et al. 2012. Dispersion of artificial caesium-134 and-137 in the western North Pacific one month after the Fukushima accident. Geochem J, 46: 1–9

    Article  Google Scholar 

  • Hou X, Povinec P P, Zhang L, et al. 2013. Iodine-129 in seawater offshore Fukushima: Distribution, inorganic speciation, sources, and budget. Environ Sci Technol, 47: 3091–3098

    Google Scholar 

  • IAEA. 2005. Worldwide Marine Radioactivity Studies (WOMARS): Radionuclide Levels in Oceans and Seas. Vienna: IAEA. 187

  • IRSN (Institute for Radiological Protection and Nuclear Safety). 2011. Simulation of atmospheric dispersion of the radioactive plume formed by releases from the Fukushima Daiichi nuclear power plant since 12 March. http://www.weatheronline.co.uk/daten/weathernews/fukushima/docs/irsn-simulation-dispersion-en.pdf

  • Kanai Y. 2012. Monitoring of aerosols in Tsukuba after Fukushima Nuclear Power Plant incident in 2011. J Environ Radioact, 111: 33–37

    Article  Google Scholar 

  • Kanda J. 2013. Continuing 137Cs release to the sea from the Fukushima Dai-ichi Nuclear Power Plant through 2012. Biogeosciences, 10: 6107–6113

    Article  Google Scholar 

  • Kashparov V, Lundin S, Zvarych S, et al. 2003. Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ, 317: 105–119

    Article  Google Scholar 

  • Katata G, Ota M, Terada H, et al. 2012. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident. J Environ Radioact, 109: 103–113

    Article  Google Scholar 

  • Kawamura H, Kobayashi T, Furuno A, et al. 2011. Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. J Nucl Sci Technol, 48: 1349–1356

    Article  Google Scholar 

  • Kelley J, Bond L, Beasley T. 1999. Global distribution of Pu isotopes and 237Np. Sci Total Environ, 237: 483–500

    Article  Google Scholar 

  • Kirchner G, Bossew P, De Cort M. 2012. Radioactivity from Fukushima Dai-ichi in air over Europe; part 2: What can it tell us about the accident? J Environ Radioact, 114: 35–40

    Article  Google Scholar 

  • Kobayashi T, Nagai H, Chino M, et al. 2013. Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations: Fukushima NPP Accident Related. J Nucl Sci Technol, 50: 255–264

    Article  Google Scholar 

  • Koo YH, Yang YS, Song KW. 2014. Radioactivity release from the Fukushima accident and its consequences: A review. Prog Nucl Energy, 74: 61–70

    Article  Google Scholar 

  • Korsakissok I, Mathieu A, Didier D. 2013. Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: A local-scale simulation and sensitivity study. Atmos Environ, 70: 267–279

    Article  Google Scholar 

  • Kutschera W, Fink D, Paul M, et al. 1988. Measurement of the 129I/131I ratio in Chernobyl fallout. Phys Scripta, 37: 310–313

    Article  Google Scholar 

  • Le Petit G, Douysset G, Ducros G, et al. 2012. Analysis of radionuclide releases from the Fukushima Dai-Ichi nuclear power plant accident Part I. Pure Appl Geophys, 171: 629–644

    Article  Google Scholar 

  • Leon J D, Jaffe D, Kaspar J, et al. 2011. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. J Environ Radioact, 102: 1032–1038

    Article  Google Scholar 

  • Lepage H, Evrard O, Onda Y, et al. 2014. Environmental mobility of 110mAg: Lessons learnt from Fukushima accident (Japan) and potential use for tracking the dispersion of contamination within coastal catchments. J Environ Radioact, 130: 44–55

    Article  Google Scholar 

  • Lin W, Chen L, He J, et al. 2015a. Review on monitoring marine radioactivity since the Fukushima Nuclear Accident (in Chinese). China Environ Sci, 35: 269–276

    Google Scholar 

  • Lin W, Chen L, Yu W, et al. 2015b. Radioactivity impacts of the Fukushima Nuclear Accident on the atmosphere. Atmos Environ, 102: 311–322

    Article  Google Scholar 

  • Livingston H D, Povinec P P. 2002. A millennium perspective on the contribution of global fallout radionuclides to ocean science. Health Phys, 82: 656–668

    Article  Google Scholar 

  • Lujaniene G, Valiulis D, Bycenkiene S, et al. 2012. Plutonium isotopes and 241Am in the atmosphere of Lithuania: A comparison of different source terms. Atmos Environ, 61: 419–427

    Article  Google Scholar 

  • Masson O, Baeza A, Bieringer J, et al. 2011. Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks. Environ Sci Technol, 45: 7670–7677

    Article  Google Scholar 

  • Masumoto Y, Miyazawa Y, Tsumune D, et al. 2012. Oceanic dispersion simulations of 137Cs released from the Fukushima Daiichi nuclear power plant. Elements, 8: 207–212

    Article  Google Scholar 

  • Mathieu A, Korsakissok I, Quélo D, et al. 2012. Atmospheric dispersion and deposition of radionuclides from the Fukushima Daiichi nuclear power plant accident. Elements, 8: 195–200

    Article  Google Scholar 

  • Merz S, Steinhauser G, Hamada N. 2013. Anthropogenic radionuclides in Japanese food: Environmental and legal implications. Environ Sci Technol, 47: 1248–1256

    Article  Google Scholar 

  • Miyake Y, Matsuzaki H, Fujiwara T, et al. 2012. Isotopic ratio of radioactive iodine (129I/131I) released from Fukushima Daiichi NPP accident. Geochem J, 46: 327

    Article  Google Scholar 

  • Miyazawa Y, Masumoto Y, Varlamov S, et al. 2012. Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident. Biogeosciences, 9: 13783–13816

    Article  Google Scholar 

  • Morino Y, Ohara T, Nishizawa M. 2011. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys Res Lett, 38: L00G11

    Article  Google Scholar 

  • Nagai H, Katata G, Terada H, et al. 2014. Source Term Estimation of 131I and 137Cs Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere. In: Takahashi S, ed. Radiation Monitoring and Dose Estimation of the Fukushima Nuclear Accident. S. Takahashi: Springer. 155–173

    Chapter  Google Scholar 

  • Nair R, Sunny F, Chopra M, et al. 2014. Estimation of radioactive leakages into the Pacific Ocean due to Fukushima nuclear accident. Environ Earth Sci, 71: 1007–1019

    Article  Google Scholar 

  • NILU. 2011. Flexpart forecast of the atmospheric dispersal of radionuclides from Fukushima. http://flexpart.eu/search?q=fukushima

  • Nishihara K, Iwamoto H, Suyama K. 2012. Estimation of fuel compositions in Fukushima-Daiichi Nuclear Power Plant. Tokai, Japan Atomic Envergy Agency

    Google Scholar 

  • Nitta W, Sanada T, Isogai K, et al. 2014. Atmospheric 85Kr and 133Xe activity concentrations at locations across Japan following the Fukushima Dai-ichi Nuclear Power Plant accident. J Nucl Sci Technol, 51: 712–715

  • Ohno T, Muramatsu Y. 2014. Determination of radioactive cesium isotope ratios by triple quadrupole ICP-MS and its application to rainwater following the Fukushima Daiichi Nuclear Power Plant accident. J Anal At Spectrom, 29: 347–351

    Article  Google Scholar 

  • Oikawa S, Watabe T, Takata H, et al. 2014. Plutonium isotopes and 241Am in surface sediments off the coast of the Japanese islands before and soon after the Fukushima Dai-ichi nuclear power plant accident. J Radioanal Nucl Chem, 188: 1–6

    Google Scholar 

  • Orr B, Schöppner M, Tinker R, et al. 2013. Detection of radioxenon in Darwin, Australia following the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact, 126: 40–44

    Article  Google Scholar 

  • Periáñez R, Suh K S, ByungIl M, et al. 2013. Numerical modeling of the releases of 90Sr from Fukushima to the ocean: An evaluation of the source term. Environ Sci Technol, 47: 12305–12313

    Article  Google Scholar 

  • Povinec P, Aoyama M, Biddulph D, et al. 2013a. Cesium, iodine and tritium in NW Pacific waters—A comparison of the Fukushima impact with global fallout. Biogeosciences, 10: 6377–6416

    Article  Google Scholar 

  • Povinec P, Gera M, Holý K, et al. 2013b. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean. Appl Radiat Isot, 81: 383–392

    Article  Google Scholar 

  • Povinec P P, Hirose K and Aoyama M. 2012. Radiostrontium in the western North Pacific: Characteristics, behavior, and the Fukushima impact. Environ Sci Technol, 46: 10356–10363

    Google Scholar 

  • Povinec P P, Hirose K, Aoyama M. 2013c. Fukushima Accident: Radioactivity Impact on the Environment. New York: Elsevier. 382

    Google Scholar 

  • Rypina I, Jayne S, Yoshida S, et al. 2013. Short-term dispersal of Fukushima- derived radionuclides off Japan: Modeling efforts and model- data intercomparison. Biogeosciences, 10: 1517–1550

    Article  Google Scholar 

  • Saegusa J, Kikuta Y, Akino H. 2013. Observation of gamma-rays from fallout collected at Ibaraki, Japan, during the Fukushima nuclear accident. Appl Radiat Isot, 77: 56–60

    Article  Google Scholar 

  • Saito K, Tanihata I, Fujiwara M, et al. 2014. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact, 139: 308–319

    Article  Google Scholar 

  • Sakaguchi A, Steier P, Takahashi Y, et al. 2014. Isotopic compositions of 236U and Pu isotopes in “Black Substances” collected from roadsides in Fukushima Prefecture: Fallout from the Fukushima Dai-ichi Nuclear Power Plant accident. Environ Sci Technol, 48: 3691–3697

    Article  Google Scholar 

  • Saunier O, Mathieu A, Didier D, et al. 2013. An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos Chem Phys, 13: 11403–11421

    Article  Google Scholar 

  • Schneider S, Walther C, Bister S, et al. 2013. Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations. Sci Rep, 3: 2988–2993

    Google Scholar 

  • Schwantes J M, Orton C R, Clark R A. 2012. Analysis of a nuclear accident: fission and activation product releases from the Fukushima Daiichi Nuclear Facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear fuel. Environ Sci Technol, 46: 8621–8627

    Article  Google Scholar 

  • Shinonaga T, Steier P, Lagos M, et al. 2014. Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions. Environ Sci Technol, 48: 3808–3814

    Article  Google Scholar 

  • Shozugawa K, Nogawa N, Matsuo M. 2012. Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident. Environ Pollut, 163: 243–247

    Article  Google Scholar 

  • Steinhauser G. 2014. Fukushima’s forgotten radionuclides: A review of the understudied radioactive emissions. Environ Sci Technol, 48: 4649–4663

    Article  Google Scholar 

  • Steinhauser G, Brandl A, Johnson T E. 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci Total Environ, 470: 800–817

    Article  Google Scholar 

  • Steinhauser G, Schauer V, Shozugawa K. 2013. Concentration of strontium-90 at selected hot spots in Japan. PloS one, 8: e57760

  • Stohl A, Seibert P, Wotawa G. 2012a. The total release of xenon-133 from the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact, 112: 155–159

    Article  Google Scholar 

  • Stohl A, Seibert P, Wotawa G, et al. 2012b. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys, 12: 2313–2343

    Article  Google Scholar 

  • Sylvester P, Milner T, Jensen J. 2013. Radioactive liquid waste treatment at Fukushima Daiichi. J Chem Technol Biot, 88: 1592–1596

    Article  Google Scholar 

  • Tagami K, Uchida S, Ishii N, et al. 2013. Estimation of Te-132 distribution in Fukushima prefecture at the early stage of the Fukushima daiichi nuclear power plant reactor failures. Environ Sci Technol, 47: 5007–5012

    Article  Google Scholar 

  • Tagami K, Uchida S, Uchihori Y, et al. 2011. Specific activity and activity ratios of radionuclides in soil collected about 20 km from the Fukushima Daiichi Nuclear Power Plant: Radionuclide release to the south and southwest. Sci Total Environ, 409: 4885–4888

    Article  Google Scholar 

  • Tanabe F. 2012. Analyses of core melt and re-melt in the Fukushima Daiichi nuclear reactors: Fukushima NPP Accident Related. J Nucl Sci Technol, 49: 18–36

    Article  Google Scholar 

  • Tanaka K, Shimada A, Hoshi A, et al. 2014. Radiochemical analysis of rubble and trees collected from Fukushima Daiichi Nuclear Power Station. J Nucl Sci Technol, 51: 1–12

    Article  Google Scholar 

  • Ten Hoeve J E, Jacobson M Z. 2012. Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy Environ Sci, 5: 8743–8757

    Article  Google Scholar 

  • TEPCO. 2011. Influence to surrounding environment. http://www.tepco.co.jp/en/nu/fukushima-np/f1/index2-e.html

  • Thakur P, Ballard S, Nelson R. 2013. An overview of Fukushima radionuclides measured in the northern hemisphere. Sci Total Environ, 458: 577–613

    Article  Google Scholar 

  • Tsumune D, Tsubono T, Aoyama M, et al. 2012. Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model. J Environ Radioact, 111: 100–108

    Article  Google Scholar 

  • Tsumune D, Tsubono T, Aoyama M, et al. 2013. One-year, regional-scale simulation of 137Cs radioactivity in the ocean following the Fukushima Daiichi Nuclear Power Plant accident. Biogeosciences, 10: 6259–6314

    Article  Google Scholar 

  • Tumey S, Guilderson T, Brown T, et al. 2013. Input of 129I into the western Pacific Ocean resulting from the Fukushima nuclear event. J Radioanal Nucl Chem, 296: 957–962

    Article  Google Scholar 

  • UNSEAR. 2008. Effects of Ionizing Radiation: Report to the General Assembly. New York: United Nations Publication. 313

  • Winiarek V, Bocquet M, Saunier O, et al. 2012. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant. J Geophys Res, 117, doi: 10.1029/2011JD016932

    Google Scholar 

  • Yamamoto M, Sakaguchi A, Ochiai S, et al. 2014a. Isotopic compositions of transuranic nuclides released by the Fukushima Dai-ichi Nuclear Power Plant accident: With emphasis on Cm isotopes. J Radioanal Nucl Chem, 300: 1–8

    Article  Google Scholar 

  • Yamamoto M, Sakaguchi A, Ochiai S, et al. 2014b. Isotopic Pu, Am and Cm signatures in environmental samples contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact, 132: 31–46

    Article  Google Scholar 

  • Yamamoto T. 2012. Radioactivity of fission product and heavy nuclides deposited on soil in Fukushima Dai-Ichi Nuclear Power Plant accident: Fukushima NPP Accident Related. J Nucl Sci Technol, 49: 1116–1133

    Article  Google Scholar 

  • Yamamoto M, Takada T, Nagao S, et al. 2012. An early survey of the radioactive contamination of soil due to the Fukushima Dai-ichi Nuclear Power Plant accident, with emphasis on plutonium analysis. Geochem J, 46: 341–353

    Article  Google Scholar 

  • Yasunari T J, Stohl A, Hayano R S, et al. 2011. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci USA, 108: 19530–19534

    Article  Google Scholar 

  • Yoshida N, Kanda J. 2012. Tracking the Fukushima radionuclides. Science, 336: 1115–1116

    Article  Google Scholar 

  • ZAMG (Central Institute for Meteorology and Geodynamics A). 2011. Accident in the Japanese NPP Fukushima: Large emissions of Cesium-137 and iondine-131.http://www.zamg.ac.at/docs/aktuell/japan2011-03-24_1600_E.pdf

  • Zheng J, Tagami K, Bu W, et al. 2014. 135Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident. Environ SciT echnol, 48: 5433–5438

    Article  Google Scholar 

  • Zheng J, Tagami K, Uchida S. 2013. Release of plutonium isotopes into the environment from the Fukushima Daiichi nuclear power plant accident: What is known and what needs to be known. Environ Sci Technol, 47: 9584–9595

    Article  Google Scholar 

  • Zheng J, Tagami K, Watanabe Y, et al. 2012. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci Rep, 2: 304–312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiQi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Chen, L., Yu, W. et al. Radioactive source terms for the Fukushima nuclear accident. Sci. China Earth Sci. 59, 214–222 (2016). https://doi.org/10.1007/s11430-015-5112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5112-8

Keywords

Navigation