Skip to main content
Log in

Surface mass balance and its climate significance from the coast to Dome A, East Antarctica

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Based on stake measurements conducted along the Chinese Antarctic traverse since Jan. 1999, we investigated the characteristics of surface mass balance (SMB) and related climate consequences from Zhongshan Station to Dome A, East Antarctica. Spatial analysis suggests that post-depositional processes have a great impact on surface morphology; thus, the representativeness of a single measurement should be discussed in conjunction with local climate features. The comparison among snow accumulation, ice sheet thickness, surface elevation, and ice velocity indicates that the bedrock topography has an indirect connection with the SMB patterns through controlling the surface topography and local climate. The observation reveals that the Lambert Glacier Basin has been experiencing increasing mass input (4.5%), whereas the inland area has experienced a 6% loss, since 2005. An overall estimation of the SMB along the route is 71.3±44.3 kg m−2 a−1, but the annual and regional variation is considerable. Tendency analysis shows that there are four sections with different SMB patterns as a result of three moisture sources and surface climatic discrepancy in the Antarctic inland. This study is the first to identify four SMB patterns from the coast to the Dome area and should provide a valuable contribution to modeling and remote sensing on a continental scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agosta C, Favier V, Genthon C, et al. 2012. A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Clim Dyn, 38: 75–86

    Article  Google Scholar 

  • Allison I. 1998. Surface climate of the interior of the Lambert Glacier basin, Antarctica, from automatic weather station data. Ann Glaciol, 27, 515–520

    Google Scholar 

  • Anschutz H, Sinisalo A, Isaksson E, et al. 2011. Variation of accumulation rates over the last eight centuries on the East Antarctic plateau derived from volcanic signals in ice cores. J Geophys Res, 116: D20103, doi: 10.1029/2011JD015753

    Article  Google Scholar 

  • Arthern R J, Winebrenner D P, Vaughan D G. 2006. Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J Geophys Res, 111: D6, doi: 10.1029/2004JD005667

    Google Scholar 

  • Bamber J, Vaughan D, Joughin I. 2000. Widespread complex flow in the interior of the antarctic ice sheet. Science, 287: 1248–1250

    Article  Google Scholar 

  • Bertler N, Barrett P J, Mayewski P A, et al. 2004. El Niño suppresses Antarctic warming. Geophys Res Lett, 31: L15207, doi: 10.1029/2004GL020749

    Article  Google Scholar 

  • Bromwith D H, Guo Z, Bai L, et al. 2004. Modelled Antarctic precipitation. Part I: Spatial and temporal variability. J Clim, 17: 427–447

    Article  Google Scholar 

  • Bull C. 1971. Snow accumulation in Antarctica. In: Quare L O, ed. Research in the Antarctica. Washington D C: American Association for the Advancement of Science. 367–421

    Google Scholar 

  • Cui X, Sun B, Tian G, et al. 2010. Preliminary results of ice radar investigation along the traverse between Zhongshan and Dome A in East Antarctic ice sheet: Ice thickness and subglacial topography. Chin Sci Bull, 55: 2715–2722

    Article  Google Scholar 

  • Cullather R I, Bromwich D H, Van Woert M L. 1996. Interannual variations in Antarctic precipitation related to El Niño-Southern Oscillation. J Geophys Res, 101: 19109–19118

    Article  Google Scholar 

  • Delaygue G, Masson V, Jouzel J, et al. 2000. The origin of Antarctic precipitation: A modelling approach. Tellus Ser B-Chem Phys Meteorol, 52: 19–36

    Article  Google Scholar 

  • Dibb J E, Fahnestock M. 2004. Snow accumulation, surface height change, and firn densification at Summit, Greenland: Insights from 2 years of in situ observation. J Geophys Res, 109: D24113, doi: 10.1029/2003JD004300

    Article  Google Scholar 

  • Ding M, Xiao C, Li Y, et al. 2011. Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J Glaciol, 57: 658–666

    Article  Google Scholar 

  • Ding M, Xiao C, Jin B, et al. 2010. Distribution of 18O in surface snow along a transect from Zhongshan Station to Dome A, East Antarctica. Chin Sci Bull, 55: 2709–271

    Article  Google Scholar 

  • Ding M, Xiao C, Zhang R, et al. 2013. The snowdrift effect on snow deposition: Insights from a comparison of a snow pit profile and meteorological observations. Cryosph Discussion, 7: 1415–1439

    Article  Google Scholar 

  • Eisen O, Frezzotti M, Genthon C, et al. 2008. Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev Geophys, 46: RG2001, doi: 10.1029/2006RG000218

    Article  Google Scholar 

  • Favier V, Agosta C, Parouty S, et al. 2013. An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere, 7: 583–597

    Article  Google Scholar 

  • Frezzotti M, Gandolfi S, Urbini S. 2002. Snow megadunes in Antarctica: Sedimentary structure and genesis. J Geophys Res, 107: 4344, doi: 10.1029/2001JD000673.

    Article  Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, et al. 2004. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dynam, 23: 803–813

    Article  Google Scholar 

  • Frezzotti M, Urbini S, Proposito M, et al. 2007. Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J Geophys Res, 112: F02032, doi: 10.1029/2006JF000638

    Google Scholar 

  • Fujii Y, Kusunoki K. 1982. The role of sublimation and condensation in the formation of ice sheet surface at Mizuho Station, Antarctica. J Geophys Res, 87: 4293–4300

    Article  Google Scholar 

  • Furukawa T, Kamiyama K, Maeno H. 1996. Snow surface features along the traverse route from the coast to Dome Fuji Station, Queen Maud Land, Antarctica. Proc NIPR Symp Polar Meteorol Glaciol, 10: 13–24

    Google Scholar 

  • Genthon C, Magand O, Krinner G, et al. 2009. Do climate models underestimate snow accumulation on the Antarctic plateau? A re-evaluation of/from in situ observations in East Wilkes and Victoria Lands. Ann Glaciol, 50: 61–65

    Article  Google Scholar 

  • Goodwin I. 1990. Snow accumulation and surface topography in the katabatic zone of Eastern Wilkes Land, Antarctica. Antarct Sci, 2: 235–242

    Article  Google Scholar 

  • Goodwin I, de Angelis M, Pook M, et al. 2003. Snow accumulation variability in Wilkes Land, East Antarctica, and the relationship to atmospheric ridging in the 130°–170°E region since 1930. J Geophys Res, 108: 4673, doi: 10.1029/2002JD002995

    Article  Google Scholar 

  • Hou S, Li Y, Xiao C, et al. 2007. Recent accumulation rate at Dome A, Antarctica. Chin Sci Bull, 52: 428–431

    Article  Google Scholar 

  • Kameda T, Motoyama H, Fujita S, et al. 2008. Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2008. J Glaciol, 54: 107–116

    Article  Google Scholar 

  • Ma Y, Bian L, Xiao C, et al. 2010. Near surface climate of the traverse route from Zhongshan Station to Dome A, East Antarctica. Antarct Sci, 22: 443–459

    Article  Google Scholar 

  • Ma Y, Bian L, Xiao C, et al. 2011. Characteristics of near surface turbulent parameters along the traverse route from Zhongshan Station to Dome A, East Antarctica (in Chinese). Chin J Geophys, 54: 1960–1971

    Google Scholar 

  • Magand O, Genthon C, Fily M, et al. 2007. An up-to-date quality-controlled surface mass balance data set for the 90°–180°E Antarctica sector and 1950–2005 period. J Geophys Res-Atmos, 112: D12106, doi: 10.1029/2006JD007691

    Article  Google Scholar 

  • Muller K, Sinisalo A, Anschutz H, et al. 2010. An 860 km surface mass balance profile on the east Antarctic plateau derived by GPR. Ann Glaciol, 51: 1–8

    Article  Google Scholar 

  • Noone D, Simmonds I. 2002. Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J Geophys Res, 107: 4742

    Article  Google Scholar 

  • Ren J, Allison I, Xiao C et al. 2002. Mass balance of the Lambert Glacier basin, East Antarctica. Sci China Ser D-Earth Sci, 45: 842–850

    Article  Google Scholar 

  • Ren J, Li C, Hou S, et al. 2010. A 2680 year volcanic record from the DT-401 East Antarctic ice core. J Geophys Res, 115: D11301, doi: 10.1029/2009JD012892

    Article  Google Scholar 

  • Ren J, Sun J, Qin D, et al. 2004. A primary study on ionic concentrations in snow pits in the hinterland of East Antarctica (in Chinese with English summary). J Glaciol Geocryol, 26: 135–141

    Google Scholar 

  • Rignot E, Casassa G, Gogineni P, et al. 2004. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett, 31: L18401, doi: 10.1029/2004GL020697

    Article  Google Scholar 

  • Rignot E, Bamber J L, Van den Broeke M, et al. 2008. Recent Antarctic ice mass loss from radar inter ferometry and regional climate modeling. Nature, 1: 106–110

    Google Scholar 

  • Rignot E, Velicogna I, van den Broeke M, et al. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett, 38: L05503, doi: 10.1029/2011GL046583.

    Article  Google Scholar 

  • Scambos T, Frezzotti M, Haran T, et al. 2012. Extent of low-accumulation “wind glaze” areas on the East Antarctic Plateau: Implications for continental ice mass balance. J Glaciol, 58: 633–647

    Article  Google Scholar 

  • Shepherd A. 2012. A reconciled estimate of ice-sheet mass balance. Science, 338: 1183–1189

    Article  Google Scholar 

  • Sodemann H, Stohl A. 2009. Asymmetries in the moisture origin of Antarctic precipitation. Geophys Res Lett, 36: L22803, doi: 10.1029/2009GL040242

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, et al. 2007. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Takahashi S, Ageta Y, Fujii Y, et al. 1994. Surface mass balance in East Dronning Maud Land in Antarctica observed by Japanese Antarctic Research Expeditions. Ann Glaciol, 20: 242–248

    Article  Google Scholar 

  • Takahashi S, Kameda T. 2007. Snow density for measuring surface mass balance using the stake method. J Glaciol, 53: 677–680

    Article  Google Scholar 

  • Takahashi S, Naruse R. 1988. A bare ice field in east Queen Maud Land, Antarctica, caused by horizontal divergence of drifting snow. Ann Glaciol, 11: 156–160

    Google Scholar 

  • Turner J. 2004. The El Niño-southern oscillation and Antarctica. Int J Clim, 24: 1–31

    Article  Google Scholar 

  • Van den Broeke M R, van lipzig N P M. 2004. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann Glaciol, 39: 119–126

    Article  Google Scholar 

  • Vaughan D G, Russell J. 1997. Compilation of surface mass balance measurements in Antarctica. Internal Rep. ES4/8/1/1997/1, 56. Cambridge: Br Antarct Surv

    Google Scholar 

  • Verfaillie D, Fily M, Le Meur E, et al. 2012. Snow accumulation variability derived from radar and firn core data along a 600 km transect in Adelie Land, East Antarctic plateau. Cryosphere, 6: 1345–1358

    Article  Google Scholar 

  • Wang Y, Sodemann H, Hou S, et al. 2013. Snow accumulation and its moisture origin over Dome Argus, Antarctica. Clim Dyn, 40: 731–742

    Article  Google Scholar 

  • Wen J, Jezek K, Monaghan A, et al. 2006. Accumulation variability and mass budgets of the Lambert Glacier-Amery Ice Shelf system, East Antarctica, at high elevations. Ann Glaciol, 43: 351–360

    Article  Google Scholar 

  • Werner M, Heimann M, Hoffman G. 2001. Isotopic composition and origin of polar precipitation in present and glacial climate simulations. Tellus Ser B-Chem Phys Meteorol, 53: 53–71

    Article  Google Scholar 

  • Xiao C, Ding M, Masson-Delmotte V, et al. 2013. Stable isotopes in surface snow along a traverse route from Zhongshan Station to Dome A, East Antarctica. Clim Dyn, 41: 2427–2438

    Article  Google Scholar 

  • Xiao C, Qin D, Bian L, et al. 2005. A precise monitoring of snow surface height in the region of Lambert Glacier basin-Amery Ice Shelf, East Antarctica. Sci China Ser D-Earth Sci, 48: 100–111

    Article  Google Scholar 

  • Zhang S, E D, Wang Z, et al. 2008. Ice velocity from static GPS observations along the transect from Zhongshan station to Dome A, East Antarctica. Ann Glaciol, 48: 113–118

    Article  Google Scholar 

  • Zhou M, Zhang Z, Zhong S, et al. 2009. Observations of near-surface wind and temperature structures and their variations with topography and latitude in East Antarctica. J Geophys Res, 114: D17115, doi: 10.1029/2008JD011611

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CunDe Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Xiao, C., Li, C. et al. Surface mass balance and its climate significance from the coast to Dome A, East Antarctica. Sci. China Earth Sci. 58, 1787–1797 (2015). https://doi.org/10.1007/s11430-015-5083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5083-9

Keywords

Navigation