Skip to main content
Log in

Ocean surface wave measurements from fully polarimetric SAR imagery

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A new method for the retrieval of ocean wave parameters from SAR imagery is developed, based on the shape-from-shading (SFS) technique. Previously, the SFS technique has been used in the reconstruction of 3D landform information from SAR images, in order to generate elevation maps of topography for land surfaces. Here, in order to retrieve ocean wave characteristics, we apply the SFS methodology, together with a method to orient the angular measurements of the azimuth slope and range slope, in the measurement of ocean surface waves. This method is applied to high resolution fine-quad polarization mode (HH, VV, VH and HV) C-band RADARSAT-2 SAR imagery, in order to retrieve ocean wave spectra and extract wave parameters. Collocated in situ buoy measurements are used to validate the reliability of this method. Results show that the method can reliably estimate wave height, dominant wave period, dominant wave length and dominant wave direction from C-band SAR images. The advantage of this method is that it does not depend on modulation transfer functions (MTFs), in order to measure ocean surface waves. This method can be used in monitoring ocean surface wave propagation through open water areas into ice-covered areas, especially the marginal ice zone (MIZ) in polar oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alpers W R, Rufenach C L. 1979. The effect of orbital motions on synthetic aperture radar imagery of ocean waves. IEEE Trans Antennas Propag, 27: 685–690

    Article  Google Scholar 

  • Alpers W R, Ross D B, Rufenach C L. 1981. On the detectability of ocean surface waves by real and synthetic aperture radar. J Geophys Res, 86: 6481–6498

    Article  Google Scholar 

  • Ballantine S. 1929. Reciprocity in electromagnetic, Mechanical, acoustical, and interconnected systems. Proc Ins Radio Eng, 6: 929–951

    Google Scholar 

  • Chaturvedi S K, Shanmugan P, Yang C S, et al. 2013. Detection of ocean wave parameters using synthetic aperture radar (SAR) data. J Navigat, 66: 283–293

    Article  Google Scholar 

  • Chen X, Wang C, Zhang H. 2009. DEM generation combining SAR polarimetry and shape-from-shading techniques. IEEE Trans Geosci Remote Sens Lett, 6: 28–32

    Article  Google Scholar 

  • Chen Z, Qin Q, Lin L, et al. 2013. DEM densification using perspective shape from shading through multispectral imagery. IEEE Trans Geosci Remote Sens Lett, 10: 145–149

    Article  Google Scholar 

  • Cloude S R, Pottier E. 1996. A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens, 34: 498–518

    Article  Google Scholar 

  • Collard F, Ardhuin F, Chapron B, et al. 2005. Extraction of coastal ocean wave fields from SAR image. IEEE Trans Geosci Remote Sens, 30: 526–533

    Google Scholar 

  • Dankert H, Rosenthal W. 2004. Ocean surface determination from X-band radar-image sequences. J Geophys Res, 109: C04016

    Google Scholar 

  • Engen G, Vachon P W, Johnsen H, et al. 2000. Retrival of ocean wave spectra and RAR MTF’s from dual-polarization SAR data. IEEE Trans Geosci Remote Sens, 38: 391–403

    Article  Google Scholar 

  • Frankot R T, Chellappa R. 1990. Estimation of surface topography from SAR imagery using shape from shading techniques. Artific Intell, 43: 271–310

    Article  Google Scholar 

  • Hasselmann K, Hasselmann S. 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J Geophys Res, 96: 10713–10729

    Article  Google Scholar 

  • Hasselmann S, Brüning C, Hasselmann K, et al. 1996. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectrum. J Geophys Res, 101: 16615–16629

    Article  Google Scholar 

  • He Y J, Perrie W, Xie T, et al. 2004. Ocean wave spectra from a linear polarimetric SAR. IEEE Trans Geosci Remote Sens, 42: 2623–2631

    Article  Google Scholar 

  • He Y J, Shen H, Perrie W. 2006. Remote sensing of ocean waves by polarimetric SAR. J Atmos Ocean Technol, 23: 1768–1773

    Article  Google Scholar 

  • Lai D Y, Delisi D P. 2010. Spatial distribution of surface wave field in coastal regions using spaceborne synthetic aperture radar images. Int J Remote Sens, 31: 4915–4931

    Article  Google Scholar 

  • Lee J S, Jasen R W, Schuler D L, et al. 1998. Polarimetric analysis and modeling of multifrequency SAR signatures from Gulf Stream fronts. IEEE J Ocean Eng, 23: 322–333

    Article  Google Scholar 

  • Lee J S, Schuler D L, Ainsworth T L. 2000. Polarimetric SAR data compensation for terrain azimuth slope variation. IEEE Trans Geosci Remote Sens, 38: 2153–2163

    Article  Google Scholar 

  • Lee J S, Pottier E. 2009. Polarimetric radar imaging from basics to applications. NewYork: CRC Press. 339

  • Lehner S, Pleskachevsky A, Bruck M. 2012. High-resolution satellite measurements of coastal wind field and sea state. Int J Remote Sens, 33: 7337–7360

    Article  Google Scholar 

  • Lyzenga D R. 2002. Unconstrained inversion of wave height spectra from SAR images. IEEE Trans Geosci Remote Sens, 40: 261–270

    Article  Google Scholar 

  • Mastenbroek C, de Valk C F. 2000. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. J Geophys Res, 105: 3497–3516

    Article  Google Scholar 

  • Monaldo F M, Lyzenga D R. 1986. On the estimation of wave slope- and height-variance spectra from SAR imagery. IEEE Trans Geosci Remote Sens, 24: 543–551

    Article  Google Scholar 

  • Paquerault S, Maitre H, Nicolas J M. 1996. Radarclinometry for ERS-1 data mapping. Proceeding of IEEE International Symposium on Geoscience and Remote Sensing (IGARSS). 503–505

    Google Scholar 

  • Pottier E. 1998. Unsupervised classification scheme and topography derivation of POLSAR data on the “H/A/α”polarimetric decomposition theorem. Proceeding of the 4th International workshop on radar polarimetry. 535–548

    Google Scholar 

  • Ramachandran V S. 1988. Perception of shape from shading. Nature, 331: 163–166

    Article  Google Scholar 

  • Rufenach C L, Alpers W R. 1981. Imaging ocean waves by synthetic aperture radars with long integration times. IEEE Trans Antennas Propag, 29: 422–428

    Article  Google Scholar 

  • Schuler D L, Lee J S, Kasilingam D, et al. 2004. Measurement of ocean surface slopes and wave spectra using polarimetric SAR image data. Remote Sens Environ, 91: 198–211

    Article  Google Scholar 

  • Schulz-Stellenfleth J, Horstmann J, Lehner S, et al. 2001. Sea surface imaging with an across-track interferometric synthetic aperture radar: the SINEWAVE experiment. IEEE Trans Geosci Remote Sens, 39: 2017–2028

    Article  Google Scholar 

  • Schulz-Stellenfleth J, Lehner S, Hoja D. 2005. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. J Geophys Res, 110: C05004

    Google Scholar 

  • Schulz-Stellenfleth J, Konig T, Lehner S. 2007. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J Geophys Res, 112: C03019

    Google Scholar 

  • Sevgi L. 2010. Reciprocity: Some remarks from a field point of view. IEEE Trans Antennas Propag Mag, 52: 205–210

    Article  Google Scholar 

  • Smith A J E, Melger F J. 2003. Using the cross-spectral phase to filter slicks in the ENVISAT ASAR wave mode product. Int J Remote Sens, 24: 5931–5396

    Google Scholar 

  • Stoykova E, Alatan A A, Benzie P, et al. 2007. 3-D time-varying scene capture technologies-A survery. IEEE Trans Circuits Syst Video Technol, 17: 1568–1586

    Article  Google Scholar 

  • Sun J, Kawamura H. 2009. Retrieval of surface wave parameters from SAR images and their validation in the coastal seas around Japan. J Oceanogr, 65: 567–577

    Article  Google Scholar 

  • Violante-Carvalho N, Robinson I S, Schulz-Stellenfleth J. 2005. Assessment of ERS synthetic aperture radar wave spectra retrieved from the Max-Planck-Institut (MPI) scheme through inter comparisons of 1 year of directional buoy measurements. J Geophys Res, 110: C07019

    Google Scholar 

  • Voorrips A C, Mastenbroek C, Hansen B. 2001. Validation of two algorithms to retrieve ocean wave spectra from ERS synthetic aperture radar. J Geophys Res, 106: 16825–16840

    Article  Google Scholar 

  • WAMDI Group-13 authors. 1988. The WAM model-a third generation oceans wave prediction model. J Phys Oceanogr, 18: 1775–1810

    Article  Google Scholar 

  • Zhang B, Perrie W, He Y J. 2010. Validation of RADARSAT-2 fully poarimetric SAR measurements of ocean surface waves. J Geophys Res, 115: C06031

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Perrie, W., He, Y. et al. Ocean surface wave measurements from fully polarimetric SAR imagery. Sci. China Earth Sci. 58, 1849–1861 (2015). https://doi.org/10.1007/s11430-015-5078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5078-6

Keywords

Navigation