Skip to main content
Log in

Origin area and migration route: Chloroplast DNA diversity in the arctic-alpine plant Koenigia islandica

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Hengduan Mountains (henceforth H-D Mountains) on the Tibet Plateau are a distribution and diversity center for many alpine genera. We examine patterns of genetic variation in an arctic-alpine plant to evaluate the possibility that the H-D Mountains constitute the area of origin of the species as well as to uncover postglacial migration routes. 220 individuals of the arctic-alpine plant Koenigia islandica were sampled from 26 populations distributed in western China and northern Finland. DNA haplotypes were identified using restriction site analysis of two chloroplast DNA intergene spacer regions, atpB-rbcL and trnL-trnF. We examined the geographical distribution of haplotype diversity in relation to latitude, and also compared various indices of diversity in putatively glaciated and unglaciated regions. Patterns of migration were inferred using nested clade analysis. A total of 25 haplotypes were detected. High haplotype diversity was found in the H-D Mountains. H3 and its radiated haplotypes were distributed in the Himalayas. Two haplotypes were fixed concurrently in the H-D Mountains and northern Finland. High genetic diversity of K. islandica and high species diversity of K. islandica are expected in the origin area. Our observations suggest that the H-D Mountains are not only the place of origin of K. islandica, but also the refugia for K. islandica on the Tibet Plateau. What is more, the migration route for the arctic-alpine plant K. islandica must have originated in the region defined by the H-D Mountains in western China extending northward to the Arctic circumpolar, and moved westward along the Himalayas, then northward across the Altay Mountains and the Central Siberian Plateau at different time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott R J. 2008. History, evolution and future of arctic and alpine flora: Overview. Plant Ecol Div, 1: 129–133

    Article  Google Scholar 

  • Abbott R J, Smith L C, Milne R I, et al. 2000. Molecular analysis of plant migration and refugia in the Arctic. Science, 289: 1343–1346

    Article  Google Scholar 

  • Akbar G, Call C A, Wiedmeier R D. 1955. Cattle dung microenvironmental effects on germination and establishment of Crested Wheatgrass. Arid Soil Res Reh, 9: 409–422

    Article  Google Scholar 

  • Andresen E. 2002. Dung beetles in a central Amazonian rainforest and their ecological role as secondary seed dispersers. Ecol Entomol, 27: 257–270

    Article  Google Scholar 

  • Axelrod D I, Al-Shehbaz I, Raven P H. 1996. History of the modern flora of China. In: Zhang A, Wu S G, eds. Floristic Characteristics and Diversity of East Asian Plants. Beijing: China Higher Education Press. 43–55

    Google Scholar 

  • Bennike O, Böcher J. 1990. Forest-tundra neighbouring the north pole: Plant and insect remains from the Plio-pleistocene kap københavn formation, North Greenland. Arctic, 43: 331–338

    Article  Google Scholar 

  • Birky C M, Fuerst P, Maruyama T. 1989. Organelle gene diversity under migration, mutation, and drift: Equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121: 613–627

    Google Scholar 

  • Boufford D E, Dijk P P V, Zhi L. 2004. Mountains of southwest China. In: Mittermeier R A, Robles-Gil P, Hoffmann M, et al., eds. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Ecoregions. Mexico: Cemex. 159–164

    Google Scholar 

  • Chen J M, Liu F, Gituru W R, et al. 2008. Chloroplast DNA phylogeography of the Chinese endemic alpine quillwort Isoetes hypsophila Hand-Mazz (Isoetaceae). Int J Plant Sci, 169: 792–798

    Article  Google Scholar 

  • Chen S Y, Wu G L, Zhang Z J, et al. 2008. Potential refugium on the Qinghai-Tibet Plateau revealed by the chloroplast DNA phylogeography of the alpine species Metagentiana striata (Gentianaceae). Bot J Linn Soc, 157: 125–140

    Article  Google Scholar 

  • Chiang T Y, Schaal B A, Peng C I. 1998. Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin, 39: 245–250

    Google Scholar 

  • Clement M, Posada D, Crandall K A. 2000. TCS: A computer program to estimate gene genealogies. Mol Ecol, 9: 1657–1659

    Article  Google Scholar 

  • Doyle J J, Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull, 19: 11–15

    Google Scholar 

  • Drummond A J, Ho S Y W, Phillips M J, et al. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol, 4: 699–710

    Article  Google Scholar 

  • Drummond A J, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol, 7: 214

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro J. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131: 479–491

    Google Scholar 

  • Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: An integrated software package f or population genetics data analysis. Evol Bioinfomat Onl, 1: 47–50

    Google Scholar 

  • Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783–791

    Article  Google Scholar 

  • Graham A. 1996. A contribution the geologic history of the Compositae. In: Hind D J N, Beentje H J, eds. Compositae: Systematics, Proceedings of the International Compositae. Kew: Royal Botanic Gardens. 123–140

    Google Scholar 

  • Harpending H C, Sherry S T, Rogers A R, et al. 1993. The genetic structure of ancient human populations. Curr Anthropol, 34: 483–496

    Article  Google Scholar 

  • Harpending H C. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol, 66: 591–600

    Google Scholar 

  • Harrison S P, Yu G, Takahar H, et al. 2001. Diversity of temperate plants in East Asia. Nature, 413: 129–130

    Article  Google Scholar 

  • Hedberg O. 1997. The genus Koenigia L. emend. Hedberg (Polygonaceae). Bot J Linn Soc, 124: 295–330

    Google Scholar 

  • Hewitt G M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc, 58: 247–276

    Article  Google Scholar 

  • Hewitt G M. 1999. Post-glacial re-colonization of European biota. Biol J Linn Soc, 68: 87–112

    Article  Google Scholar 

  • Huelsenbeck J P, Ronquist R. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755

    Article  Google Scholar 

  • Hultén E. 1937. Outline of the History of Arctic and Boreal Biota During the Quaternary Period: Their evolution during and after the glacial period as indicated by the equiformal progressive areas of present plant species (Vol. 1). Bokförlags Aktiebolaget Thule. 168

    Google Scholar 

  • Kimura M. 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press. 361

    Book  Google Scholar 

  • Malo J E, Suarcz F. 1995. Cattle dung and the fate of Biserrula pelecinus L. (Leguminosae) in a Mediterranean pasture: Seed dispersal, germination and recruitment. Bot J Linn Soc, 118: 139–148

    Google Scholar 

  • Meng L H, Yang R, Abbott RJ, et al. 2007. Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai-Tibetan Plateau and adjacent highlands. Mol Ecol, 16: 4128–4137

    Article  Google Scholar 

  • Myers N, Mittermeier R A, Mittermeier C G, et al. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858

    Article  Google Scholar 

  • Ni J. 2000. A simulation of biomes on the Plateau and their response to global climate change. Mt Res Dev, 20: 80–89

    Article  Google Scholar 

  • Petit R J, Duminil J, Fineschi S, et al. 2005. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol, 14: 689–701

    Article  Google Scholar 

  • Pons O, Petit R J. 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics, 144: 1237–1245

    Google Scholar 

  • Posada D, Crandall K A. 1998. MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14: 817–818

    Article  Google Scholar 

  • Posada D, Crandall K A, Templeton A R. 2000. GeoDis: A program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol, 9: 487–488

    Article  Google Scholar 

  • Qian H, Ricklefs R E. 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407: 180–182

    Article  Google Scholar 

  • Rambaut A. 2009. FigTree version 1.3.1. Available from: 〈http://tree.bio.ed.ac.uk/software/figtree/

    Google Scholar 

  • Abbott R J, Smith L C, Milne R I, et al. 2000. Molecular analysis of plant migration and refugia in the arctic. Science, 289: 1343–1346

    Article  Google Scholar 

  • Rogers A R, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol, 9: 552–569

    Google Scholar 

  • Rozas J, Sánchez-DelBarrio J C, Messeguer X, et al. 2003. DnaSP, DNA polymor phism analyses by the coalescent and other methods. Bioinformatics, 19: 2496–2497

    Article  Google Scholar 

  • Shi Y F, Li J J, Li B Y. 1998. Uplift and Environmental Changes of Qinghai-Tibetan Plateau in the Late Cenozoic. Guangzhou: Guangdong Science and Technology Press. 463

    Google Scholar 

  • Sun H. 2002. Evolution of Arctic-Tertiary flora in Himalayan-Hengduan mountains. Acta Bot Yunnan, 24: 671–688

    Google Scholar 

  • Swofford D L. 2002. PAUP?. Phylogenetic Analysis Using Parsimony (?and other methods) Version 4.0. Sunderland: Sinauer Associates

    Google Scholar 

  • Taberlet P T, Gielly L, Patou G, et al. 1991. Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Mol Biol, 17: 1105–1109

    Article  Google Scholar 

  • Tajima F. 1989. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123: 585–595

    Google Scholar 

  • Tang L Y, Shen C M. 1996. Late Cenozoic vegetational history and climatic characteristics of Qinghai-Xizang Plateau. Acta Micropalaeon Sin, 13: 321–337

    Google Scholar 

  • Templeton A R, Boerwinkle E, Sing C F. 1987. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. 1. Basic theory and an analysis of alcohol-dehydrogenase activity in Drosophila. Genetics, 117: 343–351

    Google Scholar 

  • Thompson J D, Gibson T J, Plewniak F, et al. 1997. The CLUSTAL _X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25: 4876–4882

    Article  Google Scholar 

  • Thompson L G, Yao T, Mosley-Thompson E. 2000. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science, 289: 1916–1919

    Article  Google Scholar 

  • Wang A L, Schluetz F, Liu J Q. 2008. Molecular evidence for double maternal origins of the diploid hybrid Hippophae goniocarpa (Elaeagnaceae). Bot J Lin Soc, 156: 111–118

    Article  Google Scholar 

  • Wang F Y, Gong X, Hu C M, et al. 2008. Phylogeography of an alpine species Primula secundiflora inferred from the chloroplast DNA sequence variation. J Syst Evol, 46: 13–22

    Google Scholar 

  • Wang L Y, Abbott R J, Zheng W, et al. 2009. History and evolution of alpine plants endemic to the Qinghai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). Mol Ecol, 18: 709–721

    Article  Google Scholar 

  • Wang W T. 1992. On some distribution patterns and some migration routes found in the eastern Asiatic region. Acta Phytotaxom Sin, 30: 1–24, 97–117

    Google Scholar 

  • Wang Y J, Liu J Q, Miehe G. 2007. Phylogenetic origins of the Himalayan endemic Dolomiaea, Diplazoptilon and Xanthopappus (Asteraceae: Cardueae) based on three DNA regions. Ann Bot, 99: 311–322

    Article  Google Scholar 

  • Wu C Y. 1987. Flora of Tibet (Vol. 5). Beijing: Science Press. 956

    Google Scholar 

  • Wu C Y. 1980. The Vegetation of China. Beijing: Science Press. 1382

    Google Scholar 

  • Wu Z Y, Wu S G. 1996. A proposal for a new floristic kingdom (realm)-The E. Asiatic kingdom, its delimitation and characteristics. Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants. Beijing, China/Berlin, Heidelberg, Germany. 3–42

    Google Scholar 

  • Yang F S, Li Y F, Ding X, et al. 2008. Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Molecular Ecology, 17: 5135–5145

    Article  Google Scholar 

  • Zeng L Y, Xu L L, Tang S Q, et al. 2010. Effect of sampling strategy on estimation of fi nescale spatial genetic structure in Androsace tapete (Primulaceae), an alpine plant endemic to Qinghai-Tibetan Plateau. J Systematics Evolution, 48: 257–264

    Article  Google Scholar 

  • Zhang Q, Chiang T Y, George M, et al. 2005. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Molecular Ecol, 14: 3513–3524

    Article  Google Scholar 

  • Zhang X S. 1978. The Plateau Zonality of Vegetation in Xizang. Acta Botan Sin, 20: 140–149

    Google Scholar 

  • Zhang X S, Yang D A, Zhou G S, et al. 1996. Model expectation of impacts of global climate change on biomes of the Tibetan Plateau. In: Omasa K, Kai K, Taodao H, et al., eds. Climate Change and Plants in East Asia. Tokyo: Springer-Verlag. 25–38

    Chapter  Google Scholar 

  • Zheng D. 1996. The system of physicogeographical regions of the Qinghai-Tibet (Xizang) Plateau. Sci China Ser D-Earth Sci, 39: 410–417

    Google Scholar 

  • Zhou Z Z, Zhang X P, Xu R X. 2004. Pollen Morphology of Koenigia from China. Acta Phytotaxonom Sin, 42: 513–523

    Google Scholar 

  • Zhou Z Z, Jiang G H, Lu R L. 1999. Study on palyno-geography of Polygonaceae in China. J China Univ Sci Tech, 29: 464–470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongZe Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, C., Min, Y., Zhao, X. et al. Origin area and migration route: Chloroplast DNA diversity in the arctic-alpine plant Koenigia islandica . Sci. China Earth Sci. 57, 1760–1770 (2014). https://doi.org/10.1007/s11430-014-4819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4819-2

Keywords

Navigation