Skip to main content
Log in

Petrogenesis of opaque assemblages in the Ningqiang carbonaceous chondrite

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Numerous round to oblate opaque assemblages (OAs) are found in chondrules and matrix of the Ningqiang carbonaceous chondrite. They are mainly composed of Ni-rich metal, magnetite, Fe, Ni-sulfides, with minor amounts of phosphate, phosphoran-olivine, pyroxene and trace amounts of nano-sized platinum-group metal alloys. The mineralogy of Ningqiang OAs is very similar to that of OAs previously reported in Ca, Al-rich inclusions of CV chondrites. Being a rare mineral phase in nature, phosphoran-olivine is thought to form by nonequilibrium reactions between P-bearing molten metal and olivine crystals during rapid cooling. Its occurrence in Ningqiang OAs indicates that the precursor of OAs was locally produced during chondrule formation, rather than directly condensed from the solar nebula as previously thought. The petrographic and mineralogical characteristics of Ningqiang OAs reveal that OAs formed by low temperature alterations of pre-existing homogeneous alloys within chondrules on a planetary body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grossman L. Refractory inclusions in the Allende meteorite. Annu Rev Earth Planet Sci, 1980, 8: 559–608

    Article  Google Scholar 

  2. Palme H, Hutcheon I D, Spettel B. Composition and origin of refractory-metal-rich assemblage in a Ca-Al-rich Allende inclusion. Geochim Cosmochim Acta, 1994, 58: 495–513

    Article  Google Scholar 

  3. E1 Goresy A, Nagel K, Ramdohr P. Fremdlinge and their noble relatives. Proc Lunar Planet Sci, 1978, 9: 1279–1303

    Google Scholar 

  4. Wark D A, Lovering J F. Refractory/platinum metal grains in Allende calcium-aluminum-rich clasts (CARC’s): possible exotic presolar material? Lunar Planet Sci, 1976, VII: 912–914

    Google Scholar 

  5. Haggerty S E, McMahon B M. Magnetite-sulfide-metal complexes in the Allende meteorite. Proc Lunar Planet Sci, 1979, 10: 851–870

    Google Scholar 

  6. Armstrong J T, El Goresy A, Wasserburg G J. Willy: a prize noble Ur-Fremdling—its history and implications for the formation of Fremdlinge and CAI. Geochim Cosmochim Acta, 1985, 49: 1001–1022

    Article  Google Scholar 

  7. Armstrong J T, Hutcheon I D, Wasserburg G J. Zelda and Company: petrogenesis of sulfide-rich Fremdlinge and constraints on solar nebula processes. Geochim Cosmochim Acta, 1987, 51: 3155–3173

    Article  Google Scholar 

  8. Blum J D, Wasserburg G J, Hutcheon I D, et al. ’Domestic’ origin of opaque assemblages in refractory inclusions in meteorites. Nature, 1988, 331: 405–409

    Article  Google Scholar 

  9. Blum J D, Wasserburg G J, Hutcheon I D, et al. Origin of opaque assemblages in C3V meteorites: implications for nebular and planetary processes. Geochim Cosmochim Acta, 1989, 53: 543–556

    Article  Google Scholar 

  10. Zinner E K, Caillet C, El Goresy A. Evidence for extraneous origin of a magnesiowüstite-metal Fremdlinge from the Vigarano CV3 chondrite. Earth Planet Sci Lett, 1991, 102: 252–264

    Article  Google Scholar 

  11. Hsu W, Guan Y, Hua X, et al. Aqueous alteration of opaque assemblages in the Ningqiang carbonaceous chondrite: evidence from oxygen isotopes. Earth Planet Sci Lett, 2006, 243: 107–114

    Article  Google Scholar 

  12. Choi B G, Wasson J T. Microscale oxygen isotopic exchange and magnetite formation in the Ningqiang anomalous carbonaceous chondrites. Geochim Cosmochim Acta, 2003, 67: 4655–4660

    Article  Google Scholar 

  13. McMahon B M, Haggerty S E. Experimental studies bearing on the magnetite-alloy-sulfide association in the Allende meteorite: constraints on the conditions of chondrule formation. Proc Lunar Planet Sci, 1980, 11: 1003–1025

    Google Scholar 

  14. Bischoff A, Palme H. Composition and mineralogy of refractory-metal-rich assemblages from a Ca, Al-rich inclusion in the Allende meteorite. Geochim Cosmochim Acta, 1987, 51: 2733–2748

    Article  Google Scholar 

  15. Hsu W, Huss G R, Wasserburg G J. Al-Mg systematics of CAIs, POI, and ferromagnesian chondrules from Ningqiang. Meteorit Planet Sci, 2003, 38: 35–48

    Article  Google Scholar 

  16. Buseck P R. Pallasite meteorites—mineralogy, petrology and geochemistry. Geochim Cosmochim Acta, 1977, 41: 711–740

    Article  Google Scholar 

  17. Buseck P R, Clark J. Zaisho—a pallasite containing pyroxene and phosphoran olivine. Mineral Mag, 1984, 48: 229–235

    Article  Google Scholar 

  18. Goodrich C A. Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disko Island, Greenland. Geochim Cosmochim Acta, 1984, 48: 1115–1126

    Article  Google Scholar 

  19. Agrell S O, Charnley N R, Chinner G A. Phosphoran olivine from Pine Canyon, Piute Co., Utah Mineral Mag, 1998, 62: 265–269

    Article  Google Scholar 

  20. Tropper P, Recheis A, Konzett J. Pyrometamorphic formation of phosphorus-rich olivines in partially molten metapelitics gneisses from a prehistoric sacrificial burning site (Ötz Valley, Tyrol, Austria). Eur J Mineral, 2004, 16: 631–640

    Article  Google Scholar 

  21. Boesenberg J S, Ebel D S, Hewins R H. An experimental study of phosphoran olivine and its significance in main group pallasites. Lunar Planet Sci, 2004, XXXV: 1366–1367

    Google Scholar 

  22. Kracher A. Notes on the evolution of the IIIAB/pallasite parent body. Lunar Planet Sci, 1983, XIV: 405–406

    Google Scholar 

  23. Anderson A T, Greenland L P. Phosphorus fractionation diagram as a quantitative indicator of crystallization differentiation of basaltic liquids. Geochim Cosmochim Acta, 1969, 33: 493–505

    Article  Google Scholar 

  24. Newsom H E, Drake M J. Experimental investigation of the partitioning of phosphorus between metal and silicate phases: implications for the Earth, Moon and Eucrite parent body. Geochim Cosmochim Acta, 1983, 47: 93–100

    Article  Google Scholar 

  25. Stolper E, Paque J M. Crystallization sequences of Ca-Al-rich inclusions from Allende: the effects of cooling rate and maximum temperature. Geochim Cosmochim Acta, 1986, 50: 1785–1806

    Article  Google Scholar 

  26. Lofgren G E. A dynamic crystallization model for chondrule melts. In: Hewins R E, Jones R H, Scott E R D, eds. Chondrules and the Protoplanetary Disk. Cambridge: Cambridge University Press, 1996. 187–196

    Google Scholar 

  27. Campbell A J, Simon S B, Humayun M, et al. Chemical evolution of metal in refractory inclusions in CV3 chondrites. Geochim Cosmochim Acta, 2002, 67: 3119–3134

    Article  Google Scholar 

  28. Clayton R N, Kieffer S W. Oxygen isotopic thermometer calibrations. In: Taylor H P J, O’Neil J R, Kaplan I R, eds. Stable Isotope Geochemistry: A Tribute to Samuel Epstein. San Antonio: Lancaster Press, 1991. 3–10

    Google Scholar 

  29. Zolensky M, McSween H Y. Aqueous alteration. In: Kerridge J F, Matthews M S, eds. Meteorites and the Early Solar System. Tucson, AZ: University of Arizona Press, 1988. 114–143

    Google Scholar 

  30. Krot A N, Scott E D, Zolensky M E. Mineralogical and chemical modification of components in CV3 chondrites: nebular or asteroidal processing? Meteoritics, 1995, 30: 748–775

    Google Scholar 

  31. Lauretta D S, Lodders K, Fegley B Jr. Experimental simulations of sulfide formation in the solar nebular. Science, 1997, 277: 358–360

    Article  Google Scholar 

  32. Travis B J, Schubert G. Hydrothermal convection in carbonaceous chondrite parent bodies. Earth Planet Sci Lett, 2005, 240: 234–250

    Article  Google Scholar 

  33. Rubin A E, Wasson J T. Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite: origin, interrelationships and possible precursor components. Geochim Cosmochim Acta, 1987, 51: 1923–1937

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HSU WeiBiao.

Additional information

Supported by the Chinese National Natural Science Foundation for Distinguished Young Scholars (Grant No. 40325009), the One-Hundred-Talent Program of Chinese Academy of Sciences, and the Minor Planet Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Hua, X. & HSU, W. Petrogenesis of opaque assemblages in the Ningqiang carbonaceous chondrite. SCI CHINA SER D 50, 886–896 (2007). https://doi.org/10.1007/s11430-007-0006-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-007-0006-z

Keywords

Navigation