Skip to main content
Log in

Geographical patterns and determinants of insect biodiversity in China

  • Reaserch Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Insects play important roles in the maintenance of ecosystem functioning and the provision of livelihoods for millions of people. However, compared with terrestrial vertebrates and angiosperms, such as the giant panda, crested ibis, and the metasequoia, insect conservation has not attracted enough attention, and a basic understanding of the geographical biodiversity patterns for major components of insects in China is lacking. Herein, we investigated the geographical distribution of insect biodiversity across multiple dimensions (taxonomic, genetic, and phylogenetic diversity) based on the spatial distribution and molecular DNA sequencing data of insects. Our analysis included 18 orders, 360 families, 5,275 genera, and 14,115 species of insects. The results revealed that Southwestern and Southeastern China harbored higher insect biodiversity and numerous older lineages, representing a museum, whereas regions located in Northwestern China harbored lower insect biodiversity and younger lineages, serving as an evolutionary cradle. We also observed that mean annual temperature and precipitation had significantly positive effects, whereas altitude had significantly negative effects on insect biodiversity in most cases. Moreover, cultivated vegetation harbored the highest insect taxonomic and phylogenetic diversity, and needleleaf and broadleaf mixed forests harbored the highest insect genetic diversity. These results indicated that human activities may positively contribute to insect spatial diversity on a regional scale. Our study fills a knowledge gap in insect spatial diversity in China. These findings could help guide national-level conservation plans and the post-2020 biodiversity conservation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auffret, A.G., Berg, J., and Cousins, S.A.O. (2014). The geography of human-mediated dispersal. Divers Distrib 20, 1450–1456.

    Article  Google Scholar 

  • Bánki, O., Roskov, Y., Döring, M., Ower, G., Hernandez Robles, D.R., Plata Corredor, C. A., Stjernegaard Jeppesen, T., Örn, A., Vandepitte, L., Hobern, D., et al. (2023). Catalogue of Life Checklist (Version 2023-09-14). Leiden: Catalogue of Life.

    Google Scholar 

  • Beaumont, L.J., Hughes, L., and Poulsen, M. (2005). Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186, 251–270.

    Article  Google Scholar 

  • Belovsky, G.E., and Slade, J.B. (2000). Insect herbivory accelerates nutrient cycling and increases plant production. Proc Natl Acad Sci USA 97, 14412–14417.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Benton, M.J., Wilf, P., and Sauquet, H. (2022). The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytol 233, 2017–2035.

    Article  PubMed  Google Scholar 

  • Brum, F.T., Graham, C.H., Costa, G.C., Hedges, S.B., Penone, C., Radeloff, V.C., Rondinini, C., Loyola, R., and Davidson, A.D. (2017). Global priorities for conservation across multiple dimensions of mammalian diversity. Proc Natl Acad Sci USA 114, 7641–7646.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., et al. (2012). Biodiversity loss and its impact on humanity. Nature 486, 59–67.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chowdhury, S., Zalucki, M.P., Hanson, J.O., Tiatragul, S., Green, D., Watson, J.E.M., and Fuller, R.A. (2023). Three-quarters of insect species are insufficiently represented by protected areas. One Earth 6, 139–146.

    Article  ADS  Google Scholar 

  • Daru, B.H., Karunarathne, P., and Schliep, K. (2020). phyloregion: R package for biogeographical regionalization and macroecology. Methods Ecol Evol 11, 1483–1491.

    Article  Google Scholar 

  • Drake, J.M., Randin, C., and Guisan, A. (2006). Modelling ecological niches with support vector machines. J Appl Ecol 43, 424–432.

    Article  Google Scholar 

  • Edgar, R.C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf 5, 113.

    Article  Google Scholar 

  • Fan, H., Huang, M., Chen, Y., Zhou, W., Hu, Y., and Wei, F. (2022). Conservation priorities for global marine biodiversity across multiple dimensions. Natl Sci Rev 10, nwac241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, J. (2019). How China will protect one-quarter of its land. Nature 569, 457.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gheyret, G., Guo, Y., Fang, J., and Tang, Z. (2020). Latitudinal and elevational patterns of phylogenetic structure in forest communities in China’s mountains. Sci China Life Sci 63, 1895–1904.

    Article  PubMed  Google Scholar 

  • Grosjean, M., Hofft, M., Gonzalez, M., Hahn, A., and Robertson, T. (2022). GRSciColl: what is the global registry of scientific collections and how to contribute? Biodivers Inf Sci Stand 6, e93875.

    Google Scholar 

  • Guisan, A., EdwardsJr, T.C., and Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157, 89–100.

    Article  Google Scholar 

  • Hazarika, A.K., and Kalita, U. (2023). Human consumption of insects. Science 379, 140–141.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hedges, S.B., Marin, J., Suleski, M., Paymer, M., and Kumar, S. (2015). Tree of life reveals clock-like speciation and diversification. Mol Biol Evol 32, 835–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, W., Zhang, X., Deng, H., Zhang, X., Wu, M., Qin, T., Li, X., Yan, D., Yi, B., Ta, W., et al. (2023). Comprehensive regionalization and potential water crisis for solar power development in arid and semi-arid regions of northwest China. Resour Conserv Recycl 193, 106939.

    Article  Google Scholar 

  • Hu, H. (1935). Distribution of China’s population: Accompanying charts and density map. Acta Geog Sin 2, 33–74.

    Google Scholar 

  • Hu, Y., Fan, H., Chen, Y., Chang, J., Zhan, X., Wu, H., Zhang, B., Wang, M., Zhang, W., Yang, L., et al. (2021). Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Sci Adv 7, eabd5725.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, M., Huang, G., Fan, H., and Wei, F. (2023). Influence of Last Glacial Maximum legacies on functional diversity and community assembly of extant Chinese terrestrial vertebrates. Innovation 4, 100379.

    PubMed  PubMed Central  Google Scholar 

  • Hunter, P. (2007). The human impact on biological diversity. EMBO Rep 8, 316–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kass, J.M., Guénard, B., Dudley, K.L., Jenkins, C.N., Azuma, F., Fisher, B.L., Parr, C.L., Gibb, H., Longino, J.T., Ward, P.S., et al. (2022). The global distribution of known and undiscovered ant biodiversity. Sci Adv 8, eabp9908.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059–3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara, A.Y., Reeves, L.E., Barber, J.R., and Black, S.H. (2021). Eight simple actions that individuals can take to save insects from global declines. Proc Natl Acad Sci USA 118, e2002547117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler, T., Giger, M., Hurni, H., Ott, C., Wiesmann, U., Wymann von Dach, S., and Maselli, D. (2010). Mountains and climate change: a global concern. Mt Res Dev 30, 53–55.

    Article  Google Scholar 

  • Liu, F.W. (2022). China protects biodiversity with determination. People’s Daily. Available from URL: https://www.cop15news.com/en/focus/2022-12/26/c_1211712278.htm.

  • Lu, L.M., Mao, L.F., Yang, T., Ye, J.F., Liu, B., Li, H.L., Sun, M., Miller, J.T., Mathews, S., Hu, H.H., et al. (2018). Evolutionary history of the angiosperm flora of China. Nature 554, 234–238.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mi, C., Huettmann, F., Guo, Y., Han, X., and Wen, L. (2017). Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 5, e2849.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mi, C., Song, K., Ma, L., Xu, J., Sun, B., Sun, Y., Liu, J., and Du, W. (2023). Optimizing protected areas to boost the conservation of key protected wildlife in China. Innovation 4, 100424.

    PubMed  PubMed Central  Google Scholar 

  • Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., and Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37, 1530–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miraldo, A., Li, S., Borregaard, M.K., Flórez-Rodrfguez, A., Gopalakrishnan, S., Rizvanovic, M., Wang, Z., Rahbek, C., Marske, K.A., and Nogués-Bravo, D. (2016). An Anthropocene map of genetic diversity. Science 353, 1532–1535.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Molnar, P., Boos, W.R., and Battisti, D.S. (2010). Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci 38, 77–102.

    Article  ADS  CAS  Google Scholar 

  • Moreira, X., Abdala-Roberts, L., Rasmann, S., Castagneyrol, B., and Mooney, K.A. (2016). Plant diversity effects on insect herbivores and their natural enemies: current thinking, recent findings, and future directions. Curr Opin Insect Sci 14, 1–7.

    Article  PubMed  Google Scholar 

  • Nipperess, D.A., and Matsen, F.A. (2013). The mean and variance of phylogenetic diversity under rarefaction. Methods Ecol Evol 4, 566–572 arXiv: 1208.6552.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien, E. (1998). Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. J Biogeogr 25, 379–398.

    Article  Google Scholar 

  • Oliver, T.H., Heard, M.S., Isaac, N.J.B., Roy, D.B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C.D.L., Petchey, O.L., et al. (2015). Biodiversity and resilience of ecosystem functions. Trends Ecol Evol 30, 673–684.

    Article  PubMed  Google Scholar 

  • Orr, M.C., Hughes, A.C., Chesters, D., Pickering, J., Zhu, C.D., and Ascher, J.S. (2021). Global patterns and drivers of bee distribution. Curr Biol 31, 451–458.e4.

    Article  CAS  PubMed  Google Scholar 

  • Peña-Kairath, C., Delclòs, X., Álvarez-Parra, S., Peñalver, E., Engel, M.S., Ollerton, J., and Peris, D. (2023). Insect pollination in deep time. Trends Ecol Evol 38, 749–759.

    Article  PubMed  Google Scholar 

  • Procheş, Ş., Wilson, J.R.U., and Cowling, R.M. (2006). How much evolutionary history in a 10×10m plot? Proc R Soc B 273, 1143–1148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabosky, D.L., Chang, J., Title, P.O., Cowman, P.F., Sallan, L., Friedman, M., Kaschner, K., Garilao, C., Near, T.J., Coll, M., et al. (2018). An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen, C.M.O., Richardson, K., Rosing, M.T., Whittaker, R.J., et al. (2019). Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114–1119.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Roberts, C.M., McClean, C.J., Veron, J.E.N., Hawkins, J.P., Allen, G.R., McAllister, D.E., Mittermeier, C.G., Schueler, F.W., Spalding, M., Wells, F., et al. (2002). Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F., and Birnbaum, P. (2017). ssdm: an R package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol Evol 8, 1795–1803.

    Article  Google Scholar 

  • Smith, S.A., and O’Meara, B.C. (2012). treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690.

    Article  CAS  PubMed  Google Scholar 

  • Stork, N.E. (2018). How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol 63, 31–45.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Yang, Y., Zhao, X., Tang, Z., Wang, S., and Fang, J. (2021). Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Sci China Life Sci 64, 739–751.

    Article  CAS  PubMed  Google Scholar 

  • Vaidya, G., Lohman, D.J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.

    Article  PubMed  Google Scholar 

  • van Huis, A., and Gasco, L. (2023). Insects as feed for livestock production. Science 379, 138–139.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang, Z., Huang, G., Huang, M., Dai, Q., Hu, Y., Zhou, J., and Wei, F. (2023). Global patterns of phylogenetic diversity and transmission of bat coronavirus. Sci China Life Sci 66, 861–874.

    Article  PubMed  Google Scholar 

  • Weisser, W.W., and Siemann, E. (2004) The various effects of insects on ecosystem functioning. In: Weisser, W.W., and Siemann, E. eds. Insects and Ecosystem Function. Ecological Studies. Berlin, Heidelberg Springer. 3–24.

    Google Scholar 

  • Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J.M., and Schwartz, M.W. (2009). Using species distribution models to predict new occurrences for rare plants. Divers Distrib 15, 565–576.

    Article  Google Scholar 

  • Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., and Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Divers Distrib 14, 763–773.

    Article  Google Scholar 

  • Xu, X., Tan, Y., Yang, G., and Barnett, J. (2018). China’s ambitious ecological red lines. Land Use Policy 79, 447–451.

    Article  Google Scholar 

  • Ye, J., Shan, Z., Peng, D., Sun, M., Niu, Y., Liu, Y., Zhang, Q., Yang, Y., Lin, Q., Chen, J., et al. (2023). Identifying gaps in the ex situ conservation of native plant diversity in China. Biol Conserv 282, 110044.

    Article  Google Scholar 

  • You, M. (1997). Conservation and utilization of the insect diversity in China. Biodivers Sci 05, 135–141.

    Article  Google Scholar 

  • Zogli, P., Pingault, L., Grover, S., and Louis, J. (2020). Ento(o)mics: the intersection of ‘omic’ approaches to decipher plant defense against sap-sucking insect pests. Curr Opin Plant Biol 56, 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Liu, X., Sun, Z., Bu, W., Bongers, F.J., Song, X., Yang, J., Sun, Z., Li, Y., Li, S., et al. (2023). Functional trait space and redundancy of plant communities decrease toward cold temperature at high altitudes in Southwest China. Sci China Life Sci 66, 376–384.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (31821001, 32030014), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000), the Youth Innovation Promotion Association, CAS (2022080) and the Young Elite Scientist Sponsorship Program by CAST (YESS20200196). Thanks for the insect distribution data support from the National Animal Collection Resource Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gexia Qiao or Fuwen Wei.

Ethics declarations

The author(s) declare that they have no conflict of Interest. All data needed to evaluate the conclusions in the paper are present in the paper and the supplementary materials. The code reported in this paper has been deposited in the GitHub database (https://github.com/fanhuizhong).

supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Liu, T., Chen, Y. et al. Geographical patterns and determinants of insect biodiversity in China. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2483-0

Navigation