Skip to main content
Log in

The genetic basis of the leafy seadragon’s unique camouflage morphology and avenues for its efficient conservation derived from habitat modeling

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The leafy seadragon certainly is among evolution’s most “beautiful and wonderful” species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahlberg, P.E. (2021). A comparative genomic framework for the fish-tetrapod transition. Sci China Life Sci 64, 664–666.

    Article  PubMed  Google Scholar 

  • Ahuja, G., and Korsching, S. (2014). Zebrafish olfactory receptor ORA1 recognizes a putative reproductive pheromone. Commun Integr Biol 7, e970501.

    Article  PubMed  PubMed Central  Google Scholar 

  • Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E.A., De Clerck, O., and Tittensor, D. (2018). Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27, 277–284.

    Article  Google Scholar 

  • Bachmann, K., Patel, H., Batayneh, Z., Slama, J., White, D., Posey, J., Ekins, S., Gold, D., and Sambucetti, L. (2004). PXR and the regulation of apoA1 and HDL-cholesterol in rodents. Pharmacol Res 50, 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian, C., Hu, Y., Ravi, V., Kuznetsova, I.S., Shen, X., Mu, X., Sun, Y., You, X., Li, J., Li, X., et al. (2016). The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci Rep 6, 24501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and genomewise. Genome Res 14, 988–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blonder, B., Morrow, C.B., Maitner, B., Harris, D.J., Lamanna, C., Violle, C., Enquist, B.J., and Kerkhoff, A.J. (2018). New approaches for delineating n-dimensional hypervolumes. Methods Ecol Evol 9, 305–319.

    Article  Google Scholar 

  • Branshaw, P. (2005). Leafy seadragon, Phycodurus eques. In: Koldewey, H. J., ed. Syngnathid Husbandry in Public Aquariums Manual. London: Project Seahorse and the Zoological Society of London. 96–107.

    Google Scholar 

  • Browne, R.K., Baker, J.L., and Connolly, R.M. (2008). Syngnathids: seadragons, seahorses, and pipefishes of Gulf St Vincent. In: Shepherd, S. A., Bryars, S., Kirkegaard, I.R., Harbison, P., and Jennings, J.T., eds. Natural History of Gulf St Vincent. Adelaide: The University of Adelaide, Royal Society of South Australia (Inc.) 162–176.

    Google Scholar 

  • Campbell, D.S., and Okamoto, H. (2013). Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization. J Cell Biol 203, 657–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, M.A., Haas, B.J., Hamilton, J.P., Mount, S.M., and Buell, C.R. (2006). Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7, 327.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell, M.S., Law, M.Y., Holt, C., Stein, J.C., Moghe, G.D., Hufnagel, D.E., Lei, J., Achawanantakun, R., Jiao, D., Lawrence, C.J., et al. (2014). MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol 164, 513–524.

    Article  CAS  PubMed  Google Scholar 

  • Chaisson, M.J., and Tesler, G. (2012). Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinf 13, 1–8.

    Article  Google Scholar 

  • Chen, S., and Huang, X. (2020). DNA sequencing: the key to unveiling genome. Sci China Life Sci 63, 1593–1596.

    Article  PubMed  Google Scholar 

  • Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., and Li, H. (2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18, 170–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, X.N., Shao, M., and Shi, D.L. (2018). Mutation of frizzled8a delays neural retinal cell differentiation and results in microphthalmia in zebrafish. Int J Dev Biol 62, 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Cong, X., Zheng, Q., Ren, W., Chéron, J.B., Fiorucci, S., Wen, T., Zhang, C., Yu, H., Golebiowski, J., and Yu, Y. (2019). Zebrafish olfactory receptors ORAs differentially detect bile acids and bile salts. J Biol Chem 294, 6762–6771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly, R.M., Melville, A.J., and Keesing, J.K. (2002). Abundance, movement and individual identification of leafy seadragons, Phycodurus eques (Pisces: Syngnathidae). Mar Freshwater Res 53, 777–780.

    Article  Google Scholar 

  • Darwin, C. (2004). On the Origin of Species, 1859. London: Routledge. De Bie, T., Cristianini, N., Demuth, J.P., and Hahn, M.W. (2006). CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271.

    Google Scholar 

  • Díaz, S.M., Settele, J., Brondízio, E., Ngo, H., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K., and Butchart, S. (2019). The global assessment report on biodiversity and ecosystem services: summary for policy makers. Available from: URL: ipbesnet/sites/default/files/2020-02/ipbes_global_assessment_report_summary_for_policymakers_en.pdf.

  • Dobrowski, S.Z., Littlefield, C.E., Lyons, D.S., Hollenberg, C., Carroll, C., Parks, S.A., Abatzoglou, J.T., Hegewisch, K., and Gage, J. (2021). Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun Earth Environ 2, 1.

    Article  Google Scholar 

  • Emms, D.M., and Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16, 157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo, S., Maeda, S., Matsunaga, T., Dhagat, U., El-Kabbani, O., Tanaka, N., Nakamura, K.T., Tajima, K., and Hara, A. (2009). Molecular determinants for the stereospecific reduction of 3-ketosteroids and reactivity towards all-trans-retinal of a short-chain dehydrogenase/reductase (DHRS4). Arch Biochem Biophys 481, 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Escher, G., Krozowski, Z., Croft, K.D., and Sviridov, D. (2003). Expression of sterol 27-hydroxylase (CYP27A1) enhances cholesterol efflux. J Biol Chem 278, 11015–11019.

    Article  CAS  PubMed  Google Scholar 

  • Fominaya, A., Loarce, Y., González, J.M., and Ferrer, E. (2016). Tyramide signal amplification: fluorescence in situ hybridization for identifying homoeologous chromosomes. In: Kianian, S., and Kianian, P., eds. Plant Cytogenetics. Methods in Molecular Biology. New York: Humana Press. 35–48.

    Chapter  Google Scholar 

  • Froese, R., and Pauly, D. (2022). Fishbase, 2022. In World Wide Web electronic publication (update ver 02/2022).

  • Ge, S., and Guo, Y.L. (2020). Evolution of genes and genomes in the genomics era. Sci China Life Sci 63, 602–605.

    Article  PubMed  Google Scholar 

  • Geng, F., Cheng, X., Wu, X., Yoo, J.Y., Cheng, C., Guo, J.Y., Mo, X., Ru, P., Hurwitz, B., Kim, S.H., et al. (2016). Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clin Cancer Res 22, 5337–5348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnerre, S., MacCallum, I., Przybylski, D., Ribeiro, F.J., Burton, J.N., Walker, B.J., Sharpe, T., Hall, G., Shea, T.P., Sykes, S., et al. (2011). High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci USA 108, 1513–1518.

    Article  CAS  PubMed  Google Scholar 

  • Groves, P. (1998). Leafy sea dragons. Sci Am 279, 84–89.

    Article  Google Scholar 

  • Guisan, A., Thuiller, W., and Zimmermann, N.E. (2017). Habitat Suitability and Distribution Models: with Applications in R. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gustafsen, C., Kjolby, M., Nyegaard, M., Mattheisen, M., Lundhede, J., Buttensclron, H., Mors, O., Bentzon, J.F., Madsen, P., Nykjaer, A., et al. (2014). The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab 19, 310–318.

    Article  CAS  PubMed  Google Scholar 

  • Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell, C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol 9, R7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, H., Saarman, N., Short, G., Sellas, A.B., Moore, B., Hoang, T., Grace, C.L., Gomon, M., Crow, K., and Brian Simison, W. (2017). Molecular phylogeny and patterns of diversification in syngnathid fishes. Mol Phylogenet Evol 107, 388–403.

    Article  PubMed  Google Scholar 

  • He, L., Long, X., Qi, J., Wang, Z., Huang, Z., Wu, S., Zhang, X., Luo, H., Chen, X., Lin, J., et al. (2021). Genome and gene evolution of seahorse species revealed by the chromosome-level genome of Hippocampus abdominalis. Mol Ecol Resour 22, 1465–1477.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, J., Fan, J., Sun, Z., and Liu, S. (2020). NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Z.M., Zhang, Q.S., Zhang, J., Kass, J.M., Mammola, S., Fresia, P., Draisma, S.G.A., Assis, J., Jueterbock, A., Yokota, M., et al. (2021). Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol Ecol 30, 3840–3855.

    Article  PubMed  Google Scholar 

  • Hussain, A. (2011). The olfactory nervous system of terrestrial and aquatic vertebrates. Nat Prec doi: https://doi.org/10.1038/npre.2011.6642.1.

  • IUCN. (2020). IUCN 2021. IUCN Red List of Threatened Species. Version 2021–3.

  • Jiang, H., Du, K., Gan, X., Yang, L., and He, S. (2019). Massive loss of olfactory receptors but not trace amine-associated receptors in the world’s deepest-living fish (Pseudoliparis swirei). Genes 10, 910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28, 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karagic, N., Schneider, R.F., Meyer, A., and Hulsey, C.D. (2020). A genomic cluster containing novel and conserved genes is associated with cichlid fish dental developmental convergence. Mol Biol Evol 37, 3165–3174.

    Article  CAS  PubMed  Google Scholar 

  • Kass, J.M., Muscarella, R., Galante, P.J., Bohl, C.L., Pinilla-Buitrago, G.E., Boria, R.A., Soley-Guardia, M., and Anderson, R.P. (2021). ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol Evol 12, 1602–1608.

    Article  Google Scholar 

  • Keilwagen, J., Wenk, M., Erickson, J.L., Schattat, M.H., Grau, J., and Hartung, F. (2016). Using intron position conservation for homology-based gene prediction. Nucleic Acids Res 44, e89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura, T., Nagao, Y., Hashimoto, H., Yamamoto-Shiraishi, Y., Yamamoto, S., Yabe, T., Takada, S., Kinoshita, M., Kuroiwa, A., and Naruse, K. (2014). Leucophores are similar to xanthophores in their specification and differentiation processes in medaka. Proc Natl Acad Sci USA 111, 7343–7348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolora, S.R.R., Owens, G.L., Vazquez, J.M., Stubbs, A., Chatla, K., Jainese, C., Seeto, K., McCrea, M., Sandel, M.W., Vianna, J.A., et al. (2021). Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science 374, 842–847.

    Article  CAS  PubMed  Google Scholar 

  • Korf, I. (2004). Gene finding in novel genomes. BMC Bioinf 5, 59. Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., and Augeri, D.M. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19, 1366–1379.

    Google Scholar 

  • Kuiter, R.H. (2000). Seahorses and Their Relatives. New York: Twayne Publishers.

    Google Scholar 

  • Li, C., Olave, M., Hou, Y., Qin, G., Schneider, R.F., Gao, Z., Tu, X., Wang, X., Qi, F., Nater, A., et al. (2021a). Genome sequences reveal global dispersal routes and suggest convergent genetic adaptations in seahorse evolution. Nat Commun 12, 1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., and Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. Nature 415, 493–496.

    Article  Google Scholar 

  • Li, J., Bian, C., Yi, Y., Yu, H., You, X., and Shi, Q. (2021b). Temporal dynamics of teleost populations during the Pleistocene: a report from publicly available genome data. BMC Genomics 22, 490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., et al. (2012). Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-Bruijn-graph. Brief Funct Genomics 11, 25–37.

    Article  PubMed  Google Scholar 

  • Lin, Q., Fan, S., Zhang, Y., Xu, M., Zhang, H., Yang, Y., Lee, A.P., Woltering, J.M., Ravi, V., Gunter, H.M., et al. (2016). The seahorse genome and the evolution of its specialized morphology. Nature 540, 395–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsey, R., and Dahlman, L. (2020). Climate Change: Global Temperature. Science & Information for a Climate Smart-Nation. 1–5</r>.

  • Liu, H., Chen, C., Lv, M., Liu, N., Hu, Y., Zhang, H., Enbody, E.D., Gao, Z., Andersson, L., and Wang, W. (2021). A chromosome-level assembly of blunt snout bream (Megalobrama amblycephala) genome reveals an expansion of olfactory receptor genes in freshwater fish. Mol Biol Evol 38, 4238–4251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Zhang, L., Xuan, K., Hu, C., Liu, S., Liao, L., Li, B., Jin, F., Shi, S., and Jin, Y. (2018). Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells. Bone Res 6, 1–5.

    Article  Google Scholar 

  • Lohbeck, K.T., Riebesell, U., and Reusch, T.B.H. (2012). Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci 5, 346–351.

    Article  CAS  Google Scholar 

  • Löytynoja, A. (2014). Phylogeny-aware alignment with PRANK. In: Russell, D., ed. Multiple Sequence Alignment Methods. Methods in Molecular Biology. Totowa: Humana Press. 155–170.

    Google Scholar 

  • Lü, Z., Gong, L., Ren, Y., Chen, Y., Wang, Z., Liu, L., Li, H., Chen, X., Li, Z., Luo, H., et al. (2021). Large-scale sequencing of flatfish genomes provides insights into the polyphyletic origin of their specialized body plan. Nat Genet 53, 742–751.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luu, P., Acher, F., Bertrand, H.O., Fan, J., and Ngai, J. (2004). Molecular determinants of ligand selectivity in a vertebrate odorant receptor. J Neurosci 24, 10128–10137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majoros, W.H., Pertea, M., and Salzberg, S.L. (2004). TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879.

    Article  CAS  PubMed  Google Scholar 

  • Manzini, I., and Korsching, S. (2011). The peripheral olfactory system of vertebrates: molecular, structural and functional basics of the sense of smell. e-Neuroforum 11, 68–77.

    Article  Google Scholar 

  • Melo-Merino, S.M., Reyes-Bonilla, H., and Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol Model 415, 108837.

    Article  Google Scholar 

  • Mombaerts, P. (2004). Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5, 263–278.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.D., Fernandez, J.P., Mis, E.K., Khokha, M.K., and Giraldez, A.J. (2015). CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12, 982–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers, E.W. (2005). The fragment assembly string graph. Bioinformatics 21, ii79–ii85.

    Article  CAS  PubMed  Google Scholar 

  • Nikaido, M., Suzuki, H., Toyoda, A., Fujiyama, A., Hagino-Yamagishi, K., Kocher, T.D., Carleton, K., and Okada, N. (2013). Lineage-specific expansion of vomeronasal type 2 receptor-like (OlfC) genes in cichlids may contribute to diversification of amino acid detection systems. Genome Biol Evol 5, 711–722.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nummela, S., Pihlström, H., Puolamäki, K., Fortelius, M., Hemilä, S., and Reuter, T. (2013). Exploring the mammalian sensory space: cooperations and trade-offs among senses. J Comp Physiol A 199, 1077–1092.

    Article  Google Scholar 

  • Ohlebusch, B., Borst, A., Frankenbach, T., Klopocki, E., Jakob, F., Liedtke, D., and Graser, S. (2020). Investigation of alpl expression and Tnap-activity in zebrafish implies conserved functions during skeletal and neuronal development. Sci Rep 10, 1–6.

    Article  Google Scholar 

  • Oram, J.F., and Lawn, R.M. (2001). ABCA1: the gatekeeper for eliminating excess tissue cholesterol. J Lipid Res 42, 1173–1179.

    Article  CAS  PubMed  Google Scholar 

  • Paridaen, J.T.M.L., Janson, E., Utami, K.H., Pereboom, T.C., Essers, P.B., van Rooijen, C., Zivkovic, D., and MacInnes, A.W. (2011). The nucleolar GTP-binding proteins Gnl2 and nucleostemin are required for retinal neurogenesis in developing zebrafish. Dev Biol 355, 286–301.

    Article  CAS  PubMed  Google Scholar 

  • Pollom, R.A., Ralph, G.M., Pollock, C.M., and Vincent, A.C.J. (2021). Global extinction risk for seahorses, pipefishes and their near relatives (Syngnathiformes). Oryx 55, 497–506.

    Article  Google Scholar 

  • Pullinger, C.R., Eng, C., Salen, G., Shefer, S., Batta, A.K., Erickson, S.K., Verhagen, A., Rivera, C.R., Mulvihill, S.J., Malloy, M.J., et al. (2002). Human cholesterol 1a-hydroxylase (CYP1A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 110, 109–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu, M., Liu, Y., Zhang, Y., Wan, S., Ravi, V., Qin, G., Jiang, H., Wang, X., Zhang, H., Zhang, B., et al. (2021). Seadragon genome analysis provides insights into its phenotype and sex determination locus. Sci Adv 7, eabg5196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala, O.E., Stuart Chapin, F., Iii, F., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., et al. (2000). Global biodiversity scenarios for the year 2100. Science 287, 1770–1774.

    Article  CAS  PubMed  Google Scholar 

  • Santaquiteria, A., Siqueira, A.C., Duarte-Ribeiro, E., Carnevale, G., White, W., Pogonoski, J., Baldwin, C.C., Ortí, G., Arcila, D., and Betancur, R. R. (2021). Phylogenomics and historical biogeography of seahorses, dragonets, goatfishes, and allies (Teleostei: Syngnatharia): assessing factors driving uncertainty in biogeographic inferences. Syst Biol 70, 1145–1162.

    Article  PubMed  Google Scholar 

  • Santoriello, C., Gennaro, E., Anelli, V., Distel, M., Kelly, A., Köster, R.W., Hurlstone, A., and Mione, M. (2010). Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PloS ONE 5, e15170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Savvaki, M., Kafetzis, G., Kaplanis, S.I., Ktena, N., Theodorakis, K., and Karagogeos, D. (2021). Neuronal, but not glial, Contactin 2 negatively regulates axon regeneration in the injured adult optic nerve. Eur J Neurosci 53, 1705–1721.

    Article  CAS  PubMed  Google Scholar 

  • Sbrocco, E.J., and Barber, P.H. (2013). MARSPEC: ocean climate layers for marine spatial ecology. Ecology 94, 979.

    Article  Google Scholar 

  • Schiffels, S., and Durbin, R. (2014). Inferring human population size and separation history from multiple genome sequences. Nat Genet 46, 919–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd, B., Wandell, M., and Ross, R. (2017). Mating, birth, larval development and settlement of Bargibant’s pygmy seahorse, Hippocampus bargibanti (Syngnathidae), in aquaria. AACL Bioflux 10, 1049–1063.

    Google Scholar 

  • Sheridan, J.A., and Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nat Clim Change 1, 401–406.

    Article  Google Scholar 

  • Silva, L., and Antunes, A. (2017). Vomeronasal receptors in vertebrates and the evolution of pheromone detection. Annu Rev Anim Biosci 5, 353–370.

    Article  CAS  PubMed  Google Scholar 

  • Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212.

    Article  PubMed  Google Scholar 

  • Small, C.M., Bassham, S., Catchen, J., Amores, A., Fuiten, A.M., Brown, R.S., Jones, A.G., and Cresko, W.A. (2016). The genome of the Gulf pipefish enables understanding of evolutionary innovations. Genome Biol 17, 258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small, C.M., Healey, H.M., Currey, M.C., Beck, E.A., Catchen, J., Lin, A. S.P., Cresko, W.A., and Bassham, S. (2022). Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes. Proc Natl Acad Sci USA 119, e2119602119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanke, M., and Waack, S. (2003). Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225.

    Article  PubMed  Google Scholar 

  • Stiller, J., da Fonseca, R.R., Alfaro, M.E., Faircloth, B.C., Wilson, N.G., and Rouse, G.W. (2021). Using ultraconserved elements to track the influence of sea-level change on leafy seadragon populations. Mol Ecol 30, 1364–1380.

    Article  CAS  PubMed  Google Scholar 

  • Stiller, J., Short, G., Hamilton, H., Saarman, N., Longo, S., Wainwright, P., Rouse, G.W., and Simison, W.B. (2022). Phylogenomic analysis of Syngnathidae reveals novel relationships, origins of endemic diversity and variable diversification rates. BMC Biol 20, 1–2.

    Article  Google Scholar 

  • Stiller, J., Wilson, N.G., Donnellan, S., and Rouse, G.W. (2016). The leafy seadragon, Phycodurus eques, a flagship species with low but structured genetic variability. J Hered 108, 152–162.

    Google Scholar 

  • Stiller, J., Wilson, N.G., and Rouse, G.W. (2015). A spectacular new species of seadragon (Syngnathidae). R Soc open sci 2, 140458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suda, A., Nishiki, I., Iwasaki, Y., Matsuura, A., Akita, T., Suzuki, N., and Fujiwara, A. (2019). Improvement of the Pacific bluefin tuna (Thunnus orientalis) reference genome and development of male-specific DNA markers. Sci Rep 9, 14450.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, S., Lomsadze, A., and Borodovsky, M. (2015). Identification of protein coding regions in RNA transcripts. Nucleic Acids Res 43, e78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarailo-Graovac, M., and Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinf 25.

  • Telgársky, R. (2014). Eyes, optics and imaging: mathematics and engineering innovations inspired by nature. Sci Issue Jan Dlugosz Univ Częstochowa Math 19.

  • Teske, P.R., and Beheregaray, L.B. (2009). Evolution of seahorses’ upright posture was linked to Oligocene expansion of seagrass habitats. Biol Lett 5, 521–523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, A., Di, A.E., Sarwar, N., Erqou, S., Saleheen, D., Dullaart, R.P., Keavney, B., Ye, Z., and Danesh, J. (2008). Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 299, 2777–2788.

    Article  CAS  PubMed  Google Scholar 

  • Tørresen, O.K., Star, B., Jentoft, S., Reinar, W.B., Grove, H., Miller, J.R., Walenz, B.P., Knight, J., Ekholm, J.M., Peluso, P., et al. (2017). An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics 18, 95.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Wassenbergh, S., Roos, G., and Ferry, L. (2011). An adaptive explanation for the horse-like shape of seahorses. Nat Commun 2, 164. Vergés, A., Doropoulos, C., Malcolm, H.A., Skye, M., Garcia-Pizá, M., Marzinelli, E.M., Campbell, A.H., Ballesteros, E., Hoey, A.S., Vila-Concejo, A., et al. (2016). Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci USA 113, 13791–13796.

    Google Scholar 

  • Walkiewicz, K., Benitez Cardenas, A.S., Sun, C., Bacorn, C., Saxer, G., and Shamoo, Y. (2012). Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance. Proc Natl Acad Sci USA 109, 21408–21413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X. (2010). DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138.

    Article  PubMed  Google Scholar 

  • Wang, X., Qu, M., Liu, Y., Schneider, R.F., Song, Y., Chen, Z., Zhang, H., Zhang, Y., Yu, H., Zhang, S., et al. (2022). Genomic basis of evolutionary adaptation in a warm-blooded fish. Innovation 3, 100185.

    CAS  PubMed  Google Scholar 

  • Wang, X., and Wang, L. (2016). GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Front Plant Sci 7.

  • Weber, J.A., Park, S.G., Luria, V., Jeon, S., Kim, H.M., Jeon, Y., Bhak, Y., Jun, J.H., Kim, S.W., Hong, W.H., et al. (2020). The whale shark genome reveals how genomic and physiological properties scale with body size. Proc Natl Acad Sci USA 117, 20662–20671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, F., Huang, G., Guan, D., Fan, H., Zhou, W., Wang, D., and Hu, Y. (2022). Digital Noah’s Ark: last chance to save the endangered species. Sci China Life Sci 65, 2325–2327.

    Article  PubMed  Google Scholar 

  • Wei, F. (2020). A new era for evolutionary developmental biology in nonmodel organisms. Sci China Life Sci 63, 1251–1253.

    Article  PubMed  Google Scholar 

  • Wilson, N.G., Stiller, J., and Rouse, G.W. (2017). Barriers to gene flow in common seadragons (Syngnathidae: Phyllopteryx taeniolatus). Conserv Genet 18, 53–66.

    Article  Google Scholar 

  • Xiao, J., Lin, Z., Qin, H., Zheng, Z., Gong, F., Liu, Y., Li, X., and Fu, X. (2020). Growth factor regulatory system: a new system for not truly recognized organisms. Sci China Life Sci 63, 443–446.

    Article  PubMed  Google Scholar 

  • Xu, H., Tong, G., Yan, T., Dong, L., Yang, X., Dou, D., Sun, Z., Liu, T., Zheng, X., Yang, J., et al. (2022). Transcriptomic analysis provides insights to reveal the bmp6 function related to the development of intermuscular bones in zebrafish. Front Cell Dev Biol 10, 821471.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Z., and Wang, H. (2007). LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35, W265–W268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Yarosh, W., Monserrate, J., Tong, J.J., Tse, S., Le, P.K., Nguyen, K., Brachmann, C.B., Wallace, D.C., and Huang, T. (2008). The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment. PLoS Genet 4, e6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, S., Liang, C., Li, W., Letcher, R.J., and Liu, C. (2021). A comprehensive system for detection of behavioral change of D. magna exposed to various chemicals. J Hazard Mater 402, 123731.

    Article  CAS  PubMed  Google Scholar 

  • Zapilko, V., and Korsching, S.I. (2016). Tetrapod V1R-like ora genes in an early-diverging ray-finned fish species: the canonical six ora gene repertoire of teleost fish resulted from gene loss in a larger ancestral repertoire. BMC Genomics 17, 83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y.H., Ravi, V., Qin, G., Dai, H., Zhang, H.X., Han, F.M., Wang, X., Liu, Y.H., Yin, J.P., Huang, L.M., et al. (2020). Comparative genomics reveal shared genomic changes in syngnathid fishes and signatures of genetic convergence with placental mammals. Natl Sci Rev 7, 964–977.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41825013, 42230409, 42006108, 42276126), Key Research Program of Frontier Sciences of CAS (ZDBS-LY-DQC004), the National Key Research and Development Program of China (2021YFF0502803), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42030204) and South China Sea Institute of Oceanology of the Chinese Academy of Sciences (SCSIO202208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Axel Meyer or Qiang Lin.

Additional information

Compliance and ethics

The authors declare that they have no conflict of interest. The procedures related to animal subjects of our study were approved by Ethic Committee of South China Sea Institute of Oceanology, Chinese Academy of Sciences.

Supporting Information

11427_2022_2317_MOESM1_ESM.pdf

The genetic basis of the leafy seadragon’s unique camouflage morphology and avenues for its efficient conservation derived from habitat modeling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, M., Zhang, Y., Gao, Z. et al. The genetic basis of the leafy seadragon’s unique camouflage morphology and avenues for its efficient conservation derived from habitat modeling. Sci. China Life Sci. 66, 1213–1230 (2023). https://doi.org/10.1007/s11427-022-2317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2317-6

Navigation