Skip to main content
Log in

Promotion of Arabidopsis immune responses by a rhizosphere fungus via supply of pipecolic acid to plants and selective augment of phytoalexins

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The ascomycete insect pathogenic fungi such as Metarhizium species have been demonstrated with the abilities to form the rhizosphere or endophytic relationships with different plants for nutrient exchanges. In this study, after the evident infeasibility of bacterial disease development in the boxed sterile soils, we established a hydroponic system for the gnotobiotic growth of Arabidopsis thaliana with the wild-type and transgenic strain of Metarhizium robertsii. The transgenic fungus could produce a high amount of pipecolic acid (PIP), a pivotal plant-immune-stimulating metabolite. Fungal inoculation experiments showed that M. robertsii could form a non-selective rhizosphere relationship with Arabidopsis. Similar to the PIP uptake by plants after exogenous application, PIP level increased in Col-0 and could be detected in the PIP-non-producing Arabidopsis mutant (ald1) after fungal inoculations, indicating that plants can absorb the PIP produced by fungi. The transgenic fungal strain had a better efficacy than the wild type to defend plants against the bacterial pathogen and aphid attacks. Contrary to ald1, fmo1 plants could not be boosted to resist bacterial infection after treatments. After fungal inoculations, the phytoalexins camalexin and aliphatic glucosinolate were selectively increased in Arabidopsis via both PIP-dependent and -independent ways. This study unveils the potential mechanism of the fungus-mediated beneficial promotion of plant immunity against biological stresses. The data also highlight the added values of M. robertsii to plants beyond the direct suppression of insect pest populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., Jiménez-Gasco, M.D.M., Luthe, D.S., and Barbercheck, M.E. (2020). Systemic colonization by Metarhizium robertsiienhances cover crop growth. J Fungi 6, 64.

    Article  CAS  Google Scholar 

  • Beekwilder, J., van Leeuwen, W., van Dam, N.M., Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados, L., Molthoff, J.W., Schipper, B., et al. (2008). The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3, e2068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Behie, S.W., Zelisko, P.M., and Bidochka, M.J. (2012). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336, 1576–1577.

    Article  CAS  PubMed  Google Scholar 

  • Behie, S.W., Moreira, C.C., Sementchoukova, I., Barelli, L., Zelisko, P.M., and Bidochka, M.J. (2017). Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nat Commun 8, 14245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernsdorff, F., Döring, A.C., Gruner, K., Schuck, S., Bräutigam, A., and Zeier, J. (2016). Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28, 102–129.

    Article  CAS  PubMed  Google Scholar 

  • Brader, G., Compant, S., Vescio, K., Mitter, B., Trognitz, F., Ma, L.J., and Sessitsch, A. (2017). Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55, 61–83.

    Article  CAS  PubMed  Google Scholar 

  • Cai, J., Jozwiak, A., Holoidovsky, L., Meijler, M.M., Meir, S., Rogachev, I., and Aharoni, A. (2021). Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Mol Plant 14, 440–455.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Li, X., Tian, L., Wu, P., Li, M., Jiang, H., Chen, Y., and Wu, G. (2014). Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus. J Integr Plant Biol 56, 1034–1041.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.C., Holmes, E.C., Rajniak, J., Kim, J.G., Tang, S., Fischer, C.R., Mudgett, M.B., and Sattely, E.S. (2018). N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc Natl Acad Sci USA 115, E4920–E4929.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clay, N.K., Adio, A.M., Denoux, C., Jander, G., and Ausubel, F.M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323, 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Coleto, I., Bejarano, I., Marín-Peña, A.J., Medina, J., Rioja, C., Burow, M., and Marino, D. (2021). Arabidopsis thaliana transcription factors MYB28 and MYB29 shape ammonium stress responses by regulating Fe homeostasis. New Phytol 229, 1021–1035.

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo, H.A., Macias-Rodriguez, L., Cortes-Penagos, C., and Lopez-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149, 1579–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, W., and St. Leger, R.J. (2010). Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol 154, 1549–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Z.Q., and Dong, X. (2013). Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64, 839–863.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L.R., Xu, G., Chao, D.Y., Li, J., Wang, P.Y., Qin, F., et al. (2020). Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63, 635–674.

    Article  PubMed  Google Scholar 

  • Hartmann, M., Kim, D., Bernsdorff, F., Ajami-Rashidi, Z., Scholten, N., Schreiber, S., Zeier, T., Schuck, S., Reichel-Deland, V., and Zeier, J. (2017). Biochemical principles and functional aspects of pipecolic acid biosynthesis in plant immunity. Plant Physiol 174, 124–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., Scholten, N., Schuck, S., Bräutigam, A., Hölzel, T., et al. (2018). Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173, 456–469.e16.

    Article  CAS  PubMed  Google Scholar 

  • He, M. (2006). Pipecolic acid in microbes: biosynthetic routes and enzymes. J Ind Microbiol Biotechnol 33, 401–407.

    Article  CAS  PubMed  Google Scholar 

  • Hirai, M.Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., Araki, R., Sakurai, N., Suzuki, H., Aoki, K., et al. (2007). Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104, 6478–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R.T., Hacquard, S., Kracher, B., Neumann, U., Ramírez, D., Bucher, M., O’Connell, R.J., et al. (2016). Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165, 464–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes, E.C., Chen, Y.C., Mudgett, M.B., and Sattely, E.S. (2021). Arabidopsis UGT76B1 glycosylates N-hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell 33, 750–765.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong, S., Sun, Y., Sun, D., and Wang, C. (2022). Microbiome assembly on Drosophila body surfaces benefits the flies to combat fungal infections. iScience 25, 104408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, S., and Bidochka, M.J. (2021). Root colonization by endophytic insect-pathogenic fungi. J Appl Microbiol 130, 570–581.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Ding, Y., Cai, B., Qin, X., Wu, J., Yuan, M., Wan, S., Zhao, Y., and Xin, X.F. (2022). Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host Microbe 30, 518–529.e6.

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., Wang, Y., Li, X., and Zhang, Y. (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Mol Plant 13, 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., Tang, D., et al. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1175.

    Article  CAS  PubMed  Google Scholar 

  • Kettles, G.J., Drurey, C., Schoonbeek, H.J., Maule, A.J., and Hogenhout, S. A. (2013). Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNA s. New Phytol 198, 1178–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.H., and Jander, G. (2007). Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49, 1008–1019.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Gilmour, S.J., Chao, L., Park, S., and Thomashow, M.F. (2020). Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes. Mol Plant 13, 157–168.

    Article  CAS  PubMed  Google Scholar 

  • Kremer, J.M., Sohrabi, R., Paasch, B.C., Rhodes, D., Thireault, C., Schulze-Lefert, P., Tiedje, J.M., and He, S.Y. (2021). Peat-based gnotobiotic plant growth systems for Arabidopsis microbiome research. Nat Protoc 16, 2450–2470.

    Article  CAS  PubMed  Google Scholar 

  • Kuśnierczyk, A., Winge, P., Jørstad, T.S., Troczynńka, J., Rossiter, J.T., and Bones, A.M. (2008). Towards global understanding of plant defence against aphids timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ 31, 1097–1115.

    Article  PubMed  Google Scholar 

  • Liao, X., O’Brien, T.R., Fang, W., and St. Leger, R.J. (2014). The plant beneficial effects of Metarhizium species correlate with their association with roots. Appl Microbiol Biotechnol 98, 7089–7096.

    Article  CAS  PubMed  Google Scholar 

  • Liao, X., Lovett, B., Fang, W., and St Leger, R.J. (2017). Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology 163, 980–991.

    Article  CAS  PubMed  Google Scholar 

  • Louis, J., and Shah, J. (2013). Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front Plant Sci 4, 213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luginbuehl, L.H., Menard, G.N., Kurup, S., Van Erp, H., Radhakrishnan, G.V., Breakspear, A., Oldroyd, G.E.D., and Eastmond, P.J. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175–1178.

    Article  CAS  PubMed  Google Scholar 

  • Luo, F., Hong, S., Chen, B., Yin, Y., Tang, G., Hu, F., Zhang, H., and Wang, C. (2020). Unveiling of Swainsonine biosynthesis via a multibranched pathway in fungi. ACS Chem Biol 15, 2476–2484.

    Article  CAS  PubMed  Google Scholar 

  • Mei, L., Wang, X., Yin, Y., Tang, G., and Wang, C. (2021). Conservative production of galactosaminogalactan in Metarhizium is responsible for appressorium mucilage production and topical infection of insect hosts. PLoS Pathog 17, e1009656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei, L., Chen, M., Shang, Y., Tang, G., Tao, Y., Zeng, L., Huang, B., Li, Z., Zhan, S., and Wang, C. (2020). Population genomics and evolution of a fungal pathogen after releasing exotic strains to control insect pests for 20 years. ISME J 14, 1422–1434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesny, F., Miyauchi, S., Thiergart, T., Pickel, B., Atanasova, L., Karlsson, M., Hüttel, B., Barry, K.W., Haridas, S., Chen, C., et al. (2021). Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nat Commun 12, 7227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohnike, L., Rekhter, D., Huang, W., Feussner, K., Tian, H., Herrfurth, C., Zhang, Y., and Feussner, I. (2021). The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell 33, 735–749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moonjely, S., and Bidochka, M.J. (2019). Generalist and specialist Metarhizium insect pathogens retain ancestral ability to colonize plant roots. Fungal Ecol 41, 209–217.

    Article  Google Scholar 

  • Moonjely, S., Barelli, L., and Bidochka, M.J. (2016). Insect pathogenic fungi as endophytes. Adv Genet 94, 107–135.

    Article  CAS  PubMed  Google Scholar 

  • Návarová, H., Bernsdorff, F., Döring, A.C., and Zeier, J. (2012). Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24, 5123–5141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rashid, M.H.O., Khan, A., Hossain, M.T., and Chung, Y.R. (2017). Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis. Front Plant Sci 8, 211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasool, S., Cárdenas, P.D., Pattison, D.I., Jensen, B., and Meyling, N.V. (2021a). Isolate-specific effect of entomopathogenic endophytic fungi on population growth of two-spotted spider mite (Tetranychus urticae Koch) and levels of steroidal glycoalkaloids in tomato. J Chem Ecol 47, 476–488.

    Article  CAS  PubMed  Google Scholar 

  • Rasool, S., Vidkjaer, N.H., Hooshmand, K., Jensen, B., Fomsgaard, I.S., and Meyling, N.V. (2021b). Seed inoculations with entomopathogenic fungi affect aphid populations coinciding with modulation of plant secondary metabolite profiles across plant families. New Phytol 229, 1715–1727.

    Article  CAS  PubMed  Google Scholar 

  • Salas-Marina, M.A., Silva-Flores, M.A., Uresti-Rivera, E.E., Castro-Longoria, E., Herrera-Estrella, A., and Casas-Flores, S. (2011). Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131, 15–26.

    Article  CAS  Google Scholar 

  • Schweizer, F., Fernández-Calvo, P., Zander, M., Diez-Diaz, M., Fonseca, S., Glauser, G., Lewsey, M.G., Ecker, J.R., Solano, R., and Reymond, P. (2013). Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25, 3117–3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Y., Xiao, G., Zheng, P., Cen, K., Zhan, S., and Wang, C. (2016). Divergent and convergent evolution of fungal pathogenicity. Genome Biol Evol 8, 1374–1387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, J., Zhao, B., Zheng, S., Zhang, X., Wang, X., Dong, W., Xie, Q., Wang, G., Xiao, Y., Chen, F., et al. (2021). A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184, 5527–5540.e18.

    Article  CAS  PubMed  Google Scholar 

  • Shikano, I., Rosa, C., Tan, C.W., and Felton, G.W. (2017). Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu Rev Phytopathol 55, 313–331.

    Article  CAS  PubMed  Google Scholar 

  • Song, J.T., Lu, H., and Greenberg, J.T. (2004). Divergent Roles in Arabidopsis thaliana development and defense of two homologous genes, ABERRANT GROWTH AND DEATH2 and AGD2-LIKE DEFENSE RESPONSE PROTEIN1, encoding novel aminotransferases. Plant Cell 16, 353–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinwender, B.M., Enkerli, J., Widmer, F., Eilenberg, J., Kristensen, H.L., Bidochka, M.J., and Meyling, N.V. (2015). Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity. J Invertebrate Pathol 132, 142–148.

    Article  Google Scholar 

  • Thiergart, T., Durán, P., Ellis, T., Vannier, N., Garrido-Oter, R., Kemen, E., Roux, F., Alonso-Blanco, C., Ågren, J., Schulze-Lefert, P., et al. (2020). Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat Ecol Evol 4, 122–131.

    Article  PubMed  Google Scholar 

  • Tian, H., De Smet, I., and Ding, Z. (2014). Shaping a root system: regulating lateral versus primary root growth. Trends Plant Sci 19, 426–431.

    Article  CAS  PubMed  Google Scholar 

  • Tocquin, P., Corbesier, L., Havelange, A., Pieltain, A., Kurtem, E., Bernier, G., and Périlleux, C. (2003). A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol 3, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Moerkercke, A., Duncan, O., Zander, M., Šimura, J., Broda, M., Vanden Bossche, R., Lewsey, M.G., Lama, S., Singh, K.B., Ljung, K., et al. (2019). A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proc Natl Acad Sci USA 116, 23345–23356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Kang, Q., Lu, Y., Bai, L., and Wang, C. (2012). Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Natl Acad Sci USA 109, 1287–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Liu, R., Lim, G.H., de Lorenzo, L., Yu, K., Zhang, K., Hunt, A. G., Kachroo, A., and Kachroo, P. (2018). Pipecolic acid confers systemic immunity by regulating free radicals. Sci Adv 4, eaar4509.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, C., and Wang, S. (2017). Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol 62, 73–90.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Long, X., Chern, M., and Chen, X. (2021). Understanding the molecular mechanisms of trade-offs between plant growth and immunity. Sci China Life Sci 64, 234–241.

    Article  PubMed  Google Scholar 

  • Wolinska, K.W., Vannier, N., Thiergart, T., Pickel, B., Gremmen, S., Piasecka, A., Piślewska-Bednarek, M., Nakano, R.T., Belkhadir, Y., Bednarek, P., et al. (2021). Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots. Proc Natl Acad Sci USA 118, e2111521118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, X.F., and He, S.Y. (2013). Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol 51, 473–498.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.M., He, S.Y., and Xin, X.F. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeier, J. (2021). Metabolic regulation of systemic acquired resistance. Curr Opin Plant Biol 62, 102050.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Wang, X., He, Y., Sang, T., Wang, P., Dai, S., Zhang, S., and Meng, X. (2020). Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis. Plant Cell 32, 2621–2638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Academy of Sciences (XDPB16, QYZDJ-SSW-SMC028) and the National Natural Science Foundation of China (32021001, 31530001). We thank Dr. Xiangzong Meng for the gift of pad3 seeds. We also thank Dr. Yining Liu for help with the LC-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengshu Wang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Tang, G., Hong, S. et al. Promotion of Arabidopsis immune responses by a rhizosphere fungus via supply of pipecolic acid to plants and selective augment of phytoalexins. Sci. China Life Sci. 66, 1119–1133 (2023). https://doi.org/10.1007/s11427-022-2238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2238-8

Keywords

Navigation