Skip to main content
Log in

Galectin-3-centered paracrine network mediates cardiac inflammation and fibrosis upon β-adrenergic insult

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Rapid over-activation of β-adrenergic receptors (β-AR) following acute stress initiates cardiac inflammation and injury by activating interleukin-18 (IL-18), however, the process of inflammation cascades has not been fully illustrated. The present study aimed to determine the mechanisms of cardiac inflammatory amplification following acute sympathetic activation. With bioinformatics analysis, galectin-3 was identified as a potential key downstream effector of β-AR and IL-18 activation. The serum level of galectin-3 was positively correlated with norepinephrine or IL-18 in patients with chest pain. In the heart of mice treated with β-AR agonist isoproterenol (ISO, 5 mg kg−1), galectin-3 expression was upregulated markedly later than IL-18 activation, and Nlrp3−/− and Il18−/− mice did not show ISO-induced galectin-3 upregulation. It was further revealed that cardiomyocyte-derived IL-18 induced galectin-3 expression in macrophages following ISO treatment. Moreover, galectin-3 deficiency suppressed ISO-induced cardiac inflammation and fibrosis without blocking ISO-induced IL-18 increase. Treatment with a galectin-3 inhibitor, but not a β-blocker, one day after ISO treatment effectively attenuated cardiac inflammation and injury. In conclusion, galectin-3 is upregulated to exaggerate cardiac inflammation and injury following acute β-AR activation, a galectin-3 inhibitor effectively blocks cardiac injury one day after β-AR insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data and materials availability statement

All data associated with this study are present in the paper or the Supplementary Materials. Any other relevant data are available from the corresponding author upon reasonable request.

References

  • Akashi, Y.J., Nef, H.M., and Lyon, A.R. (2015). Epidemiology and pathophysiology of Takotsubo syndrome. Nat Rev Cardiol 12, 387–397.

    Article  PubMed  Google Scholar 

  • Arad, U., Madar-Balakirski, N., Angel-Korman, A., Amir, S., Tzadok, S., Segal, O., Menachem, A., Gold, A., Elkayam, O., and Caspi, D. (2015). Galectin-3 is a sensor-regulator of toll-like receptor pathways in synovial fibroblasts. Cytokine 73, 30–35.

    Article  CAS  PubMed  Google Scholar 

  • Burguillos, M.A., Svensson, M., Schulte, T., Boza-Serrano, A., Garcia-Quintanilla, A., Kavanagh, E., Santiago, M., Viceconte, N., Oliva-Martin, M.J., Osman, A.M., et al. (2015). Microglia-secreted galectin-3 acts as a Toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep 10, 1626–1638.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Chen, C., Fang, J., Wang, R., and Nie, W. (2020). Circulating galectin-3 on admission and prognosis in acute heart failure patients: a meta-analysis. Heart Fail Rev 25, 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, W.L., Chen, Y.C., Li, S.J., Lee, T.I., Lee, T.W., Higa, S., Chung, C. C., Kao, Y.H., Chen, S.A., and Chen, Y.J. (2022). Galectin-3 enhances atrial remodelling and arrhythmogenesis through CD98 signalling. Acta Physiologica 234, e13784.

    Article  CAS  PubMed  Google Scholar 

  • Christia, P., and Frangogiannis, N.G. (2013). Targeting inflammatory pathways in myocardial infarction. Eur J Clin Invest 43, 986–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer, R.A., van der Velde, A.R., Mueller, C., van Veldhuisen, D.J., Anker, S.D., Peacock, W.F., Adams, K.F., and Maisel, A. (2014). Galectin-3: a modifiable risk factor in heart failure. Cardiovasc Drugs Ther 28, 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Duewell, P., Kono, H., Rayner, K.J., Sirois, C.M., Vladimer, G., Bauernfeind, F.G., Abela, G.S., Franchi, L., Nuñez, G., Schnurr, M., et al. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghadri, J.R., Kato, K., Cammann, V.L., Gili, S., Jurisic, S., Di Vece, D., Candreva, A., Ding, K.J., Micek, J., Szawan, K.A., et al. (2018). Long-term prognosis of patients with takotsubo syndrome. J Am College Cardiol 72, 874–882.

    Article  Google Scholar 

  • Henderson, N.C., Mackinnon, A.C., Farnworth, S.L., Poirier, F., Russo, F. P., Iredale, J.P., Haslett, C., Simpson, K.J., and Sethi, T. (2006). Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci USA 103, 5060–5065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isogai, T., Matsui, H., Tanaka, H., Fushimi, K., and Yasunaga, H. (2016). Early β-blocker use and in-hospital mortality in patients with Takotsubo cardiomyopathy. Heart 102, 1029–1035.

    Article  PubMed  Google Scholar 

  • Jeon, S.B., Yoon, H.J., Chang, C.Y., Koh, H.S., Jeon, S.H., and Park, E.J. (2010). Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway. J Immunol 185, 7037–7046.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, P., Swedberg, K., Leong, D.P., and Yusuf, S. (2019). The evolution of β-blockers in coronary artery disease and heart failure (part 1/5). J Am College Cardiol 74, 672–682.

    Article  Google Scholar 

  • Kivimäki, M., and Steptoe, A. (2018). Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol 15, 215–229.

    Article  PubMed  Google Scholar 

  • Li, H., Lu, Z.Z., Chen, C., Song, Y., Xiao, H., and Zhang, Y.Y. (2014). Echocardiographic assessment of β-adrenoceptor stimulation-induced heart failure with reduced heart rate in mice. Clin Exp Pharmacol Physiol 41, 58–66.

    Article  PubMed  Google Scholar 

  • Li, M., Wu, J., Hu, G., Song, Y., Shen, J., Xin, J., Li, Z., Liu, W., Dong, E., Xu, M., et al. (2021). Pathological matrix stiffness promotes cardiac fibroblast differentiation through the POU2F1 signaling pathway. Sci China Life Sci 64, 242–254.

    Article  CAS  PubMed  Google Scholar 

  • Lyon, A.R., Citro, R., Schneider, B., Morel, O., Ghadri, J.R., Templin, C., and Omerovic, E. (2021). Pathophysiology of takotsubo syndrome. J Am College Cardiol 77, 902–921.

    Article  CAS  Google Scholar 

  • MacKinnon, A.C., Liu, X., Hadoke, P.W., Miller, M.R., Newby, D.E., and Sethi, T. (2013). Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology 23, 654–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolis, A.J., Poulimenos, L.E., Kallistratos, M.S., Gavras, I., and Gavras, H. (2014). Sympathetic overactivity in hypertension and cardiovascular disease. Curr Vascul Pharmacol 12, 4–15.

    Article  CAS  Google Scholar 

  • Mezzaroma, E., Toldo, S., Farkas, D., Seropian, I.M., Van Tassell, B.W., Salloum, F.N., Kannan, H.R., Menna, A.C., Voelkel, N.F., and Abbate, A. (2011). The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA 108, 19725–19730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachtigal, M., Ghaffar, A., and Mayer, E.P. (2008). Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. Am J Pathol 172, 247–255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, M.N., Su, Y., Vizi, D., Fang, L., Ellims, A.H., Zhao, W.B., Kiriazis, H., Gao, X.M., Sadoshima, J., Taylor, A.J., et al. (2018a). Mechanisms responsible for increased circulating levels of galectin-3 in cardiomyopathy and heart failure. Sci Rep 8, 8213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, M.N., Su, Y., Kiriazis, H., Yang, Y., Gao, X.M., McMullen, J.R., Dart, A.M., and Du, X.J. (2018b). Upregulated galectin-3 is not a critical disease mediator of cardiomyopathy induced by β2-adrenoceptor overexpression. Am J Physiol-Heart Circulatory Physiol 314, H1169–H1178.

    Article  CAS  Google Scholar 

  • Obeid, S., Yousif, N., Davies, A., Loretz, R., Saleh, L., Niederseer, D., Noor, H.A., Amin, H., Mach, F., Gencer, B., et al. (2020). Prognostic role of plasma galectin-3 levels in acute coronary syndrome. Eur Heart J Acute Cardiovasc Care 9, 869–878.

    Article  PubMed  Google Scholar 

  • Rabkin, S.W., and Tang, J.K.K. (2021). The utility of growth differentiation factor-15, galectin-3, and sST2 as biomarkers for the diagnosis of heart failure with preserved ejection fraction and compared to heart failure with reduced ejection fraction: a systematic review. Heart Fail Rev 26, 799–812.

    Article  CAS  PubMed  Google Scholar 

  • Redfors, B., Vedad, R., Angerås, O., Råmunddal, T., Petursson, P., Haraldsson, I., Ali, A., Dworeck, C., Odenstedt, J., Ioaness, D., et al. (2015). Mortality in takotsubo syndrome is similar to mortality in myocardial infarction—a report from the SWEDEHEART. Int J Cardiol 185, 282–289.

    Article  PubMed  Google Scholar 

  • Roffi, M., Patrono, C., Collet, J.P., Mueller, C., Valgimigli, M., Andreotti, F., Bax, J.J., Borger, M.A., Brotons, C., Chew, D.P., et al. (2016). 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 37, 267–315.

    Article  CAS  PubMed  Google Scholar 

  • Sano, H., Hsu, D.K., Yu, L., Apgar, J.R., Kuwabara, I., Yamanaka, T., Hirashima, M., and Liu, F.T. (2000). Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165, 2156–2164.

    Article  CAS  PubMed  Google Scholar 

  • Schuster-Gaul, S., Geisler, L.J., McGeough, M.D., Johnson, C.D., Zagorska, A., Li, L., Wree, A., Barry, V., Mikaelian, I., Jih, L.J., et al. (2020). ASK1 inhibition reduces cell death and hepatic fibrosis in an Nlrp3 mutant liver injury model. JCI Insight 5, e123294.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, U.C., Pokharel, S., van Brakel, T.J., van Berlo, J.H., Cleutjens, J.P.M., Schroen, B., Andre, S., Crijns, H.J.G.M., Gabius, H.J., Maessen, J., et al. (2004). Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110, 3121–3128.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, U.C., Mosleh, W., Chaudhari, M.R., Katkar, R., Weil, B., Evelo, C., Cimato, T.R., Pokharel, S., Blankesteijn, W.M., and Suzuki, G. (2017). Myocardial and serum galectin-3 expression dynamics marks post-myocardial infarction cardiac remodelling. Heart Lung Circ 26, 736–745.

    Article  PubMed  Google Scholar 

  • Shen, J., Wu, J.M., Hu, G.M., Li, M.Z., Cong, W.W., Feng, Y.N., Wang, S. X., Li, Z.J., Xu, M., Dong, E.D., et al. (2020). Membrane nanotubes facilitate the propagation of inflammatory injury in the heart upon overactivation of the β-adrenergic receptor. Cell Death Dis 11, 958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templin, C., Ghadri, J.R., Diekmann, J., Napp, L.C., Bataiosu, D.R., Jaguszewski, M., Cammann, V.L., Sarcon, A., Geyer, V., Neumann, C. A., et al. (2015). Clinical features and outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med 373, 929–938.

    Article  CAS  PubMed  Google Scholar 

  • Vergaro, G., Prud’homme, M., Fazal, L., Merval, R., Passino, C., Emdin, M., Samuel, J.L., Cohen Solal, A., and Delcayre, C. (2016). Inhibition of galectin-3 pathway prevents isoproterenol-induced left ventricular dysfunction and fibrosis in mice. Hypertension 67, 606–612.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Deng, X., Gao, J., Gao, W., Xiao, H., Wang, X., and Zhang, Y. (2019). Autophagy mediates the secretion of macrophage migration inhibitory factor from cardiomyocytes upon serum-starvation. Sci China Life Sci 62, 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Dong, E., Zhang, Y., and Xiao, H. (2021). The role of the inflammasome in heart failure. Front Physiol 12, 709703.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao, H., Lu, M., Lin, T.Y., Chen, Z., Chen, G., Wang, W.C., Marin, T., Shentu, T.P., Wen, L., Gongol, B., et al. (2013). Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128, 632–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, H., Li, H., Wang, J.J., Zhang, J.S., Shen, J., An, X.B., Zhang, C.C., Wu, J.M., Song, Y., Wang, X.Y., et al. (2018). IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. Eur Heart J 39, 60–69.

    Article  CAS  PubMed  Google Scholar 

  • Yu, L., Ruifrok, W.P.T., Meissner, M., Bos, E.M., van Goor, H., Sanjabi, B., van der Harst, P., Pitt, B., Goldstein, I.J., Koerts, J.A., et al. (2013). Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ-Heart Failure 6, 107–117.

    Article  CAS  Google Scholar 

  • Zhao, W.B., Lu, Q., Nguyen, M.N., Su, Y., Ziemann, M., Wang, L.N., Kiriazis, H., Puthalakath, H., Sadoshima, J., Hu, H.Y., et al. (2019). Stimulation of β-adrenoceptors up-regulates cardiac expression of galectin-3 and BIM through the Hippo signalling pathway. Br J Pharmacol 176, 2465–2481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFF0501401), the National Natural Science Foundation of China (82030072), the Michigan Medicine-PKUHSC Joint Institute for Translational and Clinical Research (BMU2019JI007), the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China (81830009, 81822003), the Beijing Municipal Natural Science Foundation (7191013), the Key Clinical Projects of Peking University Third Hospital (BYSYZD2019022), and CAMS Innovation Fund for Medical Sciences to (2021-I2M-5-003). We thank Dr. Hao Dong and Dr. Nan Li from Peking University for their help on the statistical analysis of clinical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Xiao.

Additional information

Compliance and ethics

Dr. Marschall Runge is a member of the Board of Directors at Eli Lilly and Company. The other authors declare no conflict of interest.

Supplementary materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Wu, J., Gu, H. et al. Galectin-3-centered paracrine network mediates cardiac inflammation and fibrosis upon β-adrenergic insult. Sci. China Life Sci. 66, 1067–1078 (2023). https://doi.org/10.1007/s11427-022-2189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2189-x

Navigation