Skip to main content
Log in

Functional trait space and redundancy of plant communities decrease toward cold temperature at high altitudes in Southwest China

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Plant communities in mountainous areas shift gradually as climatic conditions change with altitude. How trait structure in multivariate space adapts to these varying climates in natural forest stands is unclear. Studying the multivariate functional trait structure and redundancy of tree communities along altitude gradients is crucial to understanding how temperature change affects natural forest stands. In this study, the leaf area, specific leaf area, leaf carbon, nitrogen, and phosphorous content from 1,590 trees were collected and used to construct the functional trait space of 12 plant communities at altitudes ranging from 800 m to 3,800 m across three mountains. Hypervolume overlap was calculated to quantify species trait redundancy per community. First, hypervolumes of species exclusion and full species set were calculated, respectively. Second, the overlap between these two volumes was calculated to obtain hypervolume overlap. Results showed that the functional trait space significantly increased with mean annual temperature toward lower altitudes within and across three mountains, whereas species trait redundancy had different patterns between mountains. Thus, warming can widen functional trait space and alter the redundancy in plant communities. The inconsistent patterns of redundancy between mountains suggest that warming exerts varying influences on different ecosystems. Identification of climate-vulnerable ecosystems is important in the face of global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrich, K., Rammer, W., and Seidl, R. (2020). Climate change causes critical transitions and irreversible alterations of mountain forests. Glob Change Biol 26, 4013–4027.

    Article  Google Scholar 

  • Bittebiere, A.-K., Saiz, H., and Mony, C. (2019). New insights from multidimensional trait space responses to competition in two clonal plant species. Funct Ecol 33, 297–307.

    Article  Google Scholar 

  • Blonder, B., Lamanna, C., Violle, C., and Enquist, B.J. (2014). The n-dimensional hypervolume. Glob Ecol Biogeography 23, 595–609.

    Article  Google Scholar 

  • Blonder, B., Morrow, C.B., Maitner, B., Harris, D.J., Lamanna, C., Violle, C., Enquist, B. J., and Kerkhoff, A.J. (2018). New approaches for delineating n-dimensional hypervolumes. Methods Ecol Evol 9, 305–319.

    Article  Google Scholar 

  • Bongers, F.J., Schmid, B., Durka, W., Li, S., Bruelheide, H., Hahn, C.Z., Yan, H., Ma, K., and Liu, X. (2020). Genetic richness affects trait variation but not community productivity in a tree diversity experiment. New Phytol 227, 744–756.

    Article  PubMed  Google Scholar 

  • Brearley, F.Q., Adinugroho, W.C., Cámara-Leret, R., Krisnawati, H., Ledo, A., Qie, L., Smith, T.E.L., Aini, F., Garnier, F., Lestari, N.S., et al. (2019). Opportunities and challenges for an Indonesian forest monitoring network. Ann For Sci 76, 54.

    Article  Google Scholar 

  • Carmona, C.P., de Bello, F., Mason, N.W.H., and Lepš, J. (2016). Traits without borders: integrating functional diversity across scales. Trends Ecol Evol 31, 382–394.

    Article  PubMed  Google Scholar 

  • Catford, J.A., Wilson, J.R.U., Pyšek, P., Hulme, P.E., and Duncan, R.P. (2022). Addressing context dependence in ecology. Trends Ecol Evol 37, 158–170.

    Article  PubMed  Google Scholar 

  • Cornwell, W.K., and Ackerly, D.D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monographs 79, 109–126.

    Article  Google Scholar 

  • Cornwell, W.K., Schwilk, D.W., and Ackerly, D.D. (2006). A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471.

    Article  PubMed  Google Scholar 

  • De Boeck, H.J., Lemmens, C.M.H.M., Gielen, B., Bossuyt, H., Malchair, S., Carnol, M., Merckx, R., Ceulemans, R., and Nijs, I. (2007). Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Environ Exp Bot 60, 95–104.

    Article  Google Scholar 

  • Denelle, P., Violle, C., and Munoz, F. (2019). Distinguishing the signatures of local environmental filtering and regional trait range limits in the study of trait-environment relationships. Oikos 128, 960–971.

    Article  Google Scholar 

  • Diaz, S., Cabido, M., and Casanoves, F. (1998). Plant functional traits and environmental filters at a regional scale. J Vegetation Sci 9, 113–122.

    Article  Google Scholar 

  • Diaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., et al. (2016). The global spectrum of plant form and function. Nature 529, 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Eisaguirre, J.H., Eisaguirre, J.M., Davis, K., Carlson, P.M., Gaines, S.D., and Caselle, J.E. (2020). Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology 101, e02993.

    Article  PubMed  Google Scholar 

  • Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., and Norberg, J. (2003). Response diversity, ecosystem change, and resilience. Front Ecol Environ 1, 488–494.

    Article  Google Scholar 

  • Engler, R., Randin, C.F., Thuiller, W., Dullinger, S., Zimmermann, N.E., Araújo, M.B., Pearman, P.B., Le Lay, G., Piedallu, C., Albert, C.H., et al. (2011). 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17, 2330–2341.

    Article  Google Scholar 

  • Fay, P.A., Kaufman, D.M., Nippert, J.B., Carlisle, J.D., and Harper, C.W. (2008). Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Glob Change Biol 14, 1600–1608.

    Article  Google Scholar 

  • Fetzer, I., Johst, K., Schäwe, R., Banitz, T., Harms, H., and Chatzinotas, A. (2015). The extent of functional redundancy changes as species’ roles shift in different environments. Proc Natl Acad Sci USA 112, 14888–14893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca, C.R., and Ganade, G. (2001). Species functional redundancy, random extinctions and the stability of ecosystems. J Ecol 89, 118–125.

    Article  Google Scholar 

  • Gardener, M. (2014). Community Ecology: Analytical Methods Using R and Excel. Exeter: Pelagic Publishing.

    Google Scholar 

  • Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L.R., Xu, G., Chao, D.Y., Li, J., Wang, P.Y., Qin, F., et al. (2020). Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63, 635–674.

    Article  PubMed  Google Scholar 

  • Hu, Y.K., Liu, G.F., Pan, X., Song, Y.B., Dong, M., and Cornelissen, J.H.C. (2021). Abundance-weighted plant functional trait variation differs between terrestrial and wetland habitats along wide climatic gradients. Sci China Life Sci 64, 593–605.

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbor Symposia Quantitative Biol 22, 415–427.

    Article  Google Scholar 

  • Imbert, J.B., Blanco, J.A., Candel-Pérez, D., Lo, Y.-H., González de Andrés, E., Yeste, A., Herrera-Álvarez, X., Rivadeneira Barba, G., Liu, Y., and Chang, S.C. (2021). Synergies between climate change, biodiversity, ecosystem function and services, indirect drivers of change and human well-being in forests in Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals. Singapore: Springer Singapore.

    Google Scholar 

  • Jax, K. (2005). Function and “functioning” in ecology: what does it mean? Oikos 111, 641–648.

    Article  Google Scholar 

  • Kang, S., Ma, W., Li, F.Y., Zhang, Q., Niu, J., Ding, Y., Han, F., and Sun, X. (2015). Functional redundancy instead of species redundancy determines community stability in a typical steppe of Inner Mongolia. PLoS ONE 10, e0145605.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohli, B.A., and Jarzyna, M.A. (2021). Pitfalls of ignoring trait resolution when drawing conclusions about ecological processes. Glob Ecol Biogeogr 30, 1139–1152.

    Article  Google Scholar 

  • Lamanna, C., Blonder, B., Violle, C., Kraft, N.J.B., Sandel, B., Šímová, I., DonoghueIi, J.C., Svenning, J.C., McGill, B.J., Boyle, B., et al. (2014). Functional trait space and the latitudinal diversity gradient. Proc Natl Acad Sci USA 111, 13745–13750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton, J., and Brown, V. (1993). Redundancy in ecosystems. Biodiversity and Ecosystem Function. New York: Springer.

    Google Scholar 

  • Li, B.G., and Zhu, H. (2005). A study on ferns in monsoon evergreen broad-leaved forest on Nangong Mountain in Mengla, Xishuangbanna, China. Guihaia 25, 497–503.

    Google Scholar 

  • Li, J., Song, X., and Cao, M. (2016). Response of tree seedlings to altitudinal gradient and its seasonal variation in Ailao Mountain and Yulong Mountain, Yunnan Province, China. Chinese J Appl Ecol 27, 3403–3412.

    Google Scholar 

  • Liang, Z.W., and Gong, H.D. (2013). The controlling effect of climate factors on evergreen broad-leaved forest in Ailao Mountain. J Green Sci Tech 4, 3–5.

    Google Scholar 

  • Ma, W.L., Shi, P.L., Li, W.H., He, Y.T., Zhang, X.Z., Shen, Z.X., and Chai, S.Y. (2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Sci China Life Sci 53, 1142–1151.

    Article  PubMed  Google Scholar 

  • Naeem, S. (2002). Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83, 1537–1552.

    Article  Google Scholar 

  • Norberg, J. (2004). Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol Oceanogr 49, 1269–1277.

    Article  Google Scholar 

  • Pillar, V., Blanco, C., Müller, S., Sosinski, E., Joner, F., and Duarte, L. (2013). Functional redundancy and stability in plant communities. J Veg Sci 24, 963–974.

    Article  Google Scholar 

  • Rahbek, C. (1995). The elevational gradient of species richness: a uniform pattern? Ecography 18, 200–205.

    Article  Google Scholar 

  • Rees, M., Condit, R., Crawley, M., Pacala, S., and Tilman, D. (2001). Long-term studies of vegetation dynamics. Science 293, 650–655.

    Article  CAS  PubMed  Google Scholar 

  • Safi, K., Cianciaruso, M.V., Loyola, R.D., Brito, D., Armour-Marshall, K., and Diniz-Filho, J.A.F. (2011). Understanding global patterns of mammalian functional and phylogenetic diversity. Phil Trans R Soc B 366, 2536–2544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, D., Thébault, E., Kehoe, R., and Frank van Veen, F.J. (2018). Trophic redundancy reduces vulnerability to extinction cascades. Proc Natl Acad Sci USA 115, 2419–2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffer, M. (2009). Critical Transitions in Nature and Society. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol Evol 19, 605–611.

    Article  Google Scholar 

  • Swenson, N.G., Anglada-Cordero, P., and Barone, J.A. (2011). Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc R Soc B 278, 877–884.

    Article  PubMed  Google Scholar 

  • Swenson, N.G., Enquist, B.J., Pither, J., Kerkhoff, A.J., Boyle, B., Weiser, M.D., Elser, J.J., Fagan, W.F., Forero-Montaña, J., Fyllas, N., et al. (2012). The biogeography and filtering of woody plant functional diversity in North and South America. Glob Ecol Biogeogr 21, 798–808.

    Article  Google Scholar 

  • Thakur, D., and Chawla, A. (2019). Functional diversity along elevational gradients in the high altitude vegetation of the western Himalaya. Biodivers Conserv 28, 1977–1996.

    Article  Google Scholar 

  • Turner, M.G., Calder, W.J., Cumming, G.S., Hughes, T.P., Jentsch, A., LaDeau, S.L., Lenton, T.M., Shuman, B.N., Turetsky, M.R., Ratajczak, Z., et al. (2020). Climate change, ecosystems and abrupt change: science priorities. Phil Trans R Soc B 375, 20190105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, B.H. (1992). Biodiversity and ecological redundancy. Conservation Biol 6, 18–23.

    Article  Google Scholar 

  • Whittaker, R.J., Willis, K.J., and Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeography 28, 453–470.

    Article  Google Scholar 

  • Whittaker, R.H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monographs 30, 407.

    Article  Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., et al. (2004). The worldwide leaf economics spectrum. Nature 428, 821–827.

    Article  CAS  PubMed  Google Scholar 

  • Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., et al. (2020). Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000), the National Natural Science Foundation of China (31870409, 32061123003), the National Science and Technology Ministry Major Project (2017YFA0605103), CAS Interdisciplinary Innovation Team (JCTD-2018-06), the Youth Innovation Promotion Association CAS (2019082) and the National Science Foundation of the United States (DEB-2029997). We acknowledge the local helpers involved in setting up the plots and collecting data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojuan Liu or Keping Ma.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supplementary material for

11427_2021_2135_MOESM1_ESM.pdf

Functional trait space and redundancy of plant communities decrease toward cold temperature at high altitudes in Southwest China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, X., Sun, Z. et al. Functional trait space and redundancy of plant communities decrease toward cold temperature at high altitudes in Southwest China. Sci. China Life Sci. 66, 376–384 (2023). https://doi.org/10.1007/s11427-021-2135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2135-3

Keywords

Navigation