Skip to main content
Log in

KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The pluripotent state of embryonic stem cells (ESCs) is regulated by a sophisticated network of transcription factors. High expression of KLF17 has recently been identified as a hallmark of naive state of human ESCs (hESCs). However, the functional role of KLF17 in naive state is not clear. Here, by employing various gain and loss-of-function approaches, we demonstrate that KLF17 is essential for the maintenance of naive state and promotes the primed to naive state transition in hESCs. Mechanistically, we identify MAPK3 and ZIC2 as two direct targets repressed by KLF17. Overexpression of MAPK3 or ZIC2 partially blocks KLF17 from promoting the naive pluripotency. Furthermore, we find that human and mouse homologs of KLF17 retain conserved functions in promoting naive pluripotency of both species. Finally, we show that Klf17 may be essential for early embryo development in mouse. These findings demonstrate the important and conserved function of KLF17 in promoting naive pluripotency and reveal two essential transcriptional targets of KLF17 that underlie its function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, A., Zhang, P., Liangfang, Y., Wenshe, S., Wang, H., Lin, X., Dai, Y., Feng, X., Moses, R., Wang, D., et al. (2015). KLF17 empowers TGF-β/Smad signaling by targeting Smad3-dependent pathway to suppress tumor growth and metastasis during cancer progression. Cell Death Dis 6, e1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An, C., Feng, G., Zhang, J., Cao, S., Wang, Y., Wang, N., Lu, F., Zhou, Q., and Wang, H. (2020). Overcoming autocrine FGF signaling-induced heterogeneity in naive human ESCs enables modeling of random X chromosome inactivation. Cell Stem Cell 27, 482–497.e4.

    Article  CAS  PubMed  Google Scholar 

  • Azami, T., Matsumoto, K., Jeon, H., Waku, T., Muratani, M., Niwa, H., Takahashi, S., and Ema, M. (2018). Klf5 suppresses ERK signaling in mouse pluripotent stem cells. PLoS ONE 13, e0207321–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates, L.E., and Silva, J.C. (2017). Reprogramming human cells to naïve pluripotency: how close are we?. Curr Opin Genet Dev 46, 58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayerl, J., Ayyash, M., Shani, T., Manor, Y.S., Gafni, O., Massarwa, R., Kalma, Y., Aguilera-Castrejon, A., Zerbib, M., Amir, H., et al. (2021). Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell 28, 1549–1565.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bialkowska, A.B., Yang, V.W., and Mallipattu, S.K. (2017). Krüppel-like factors in mammalian stem cells and development. Development 144, 737–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brons, I.G.M., Smithers, L.E., Trotter, M.W.B., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S.M., Howlett, S.K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R.A., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Buecker, C., Srinivasan, R., Wu, Z., Calo, E., Acampora, D., Faial, T., Simeone, A., Tan, M., Swigut, T., and Wysocka, J. (2014). Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell 14, 838–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez, A., Scheiman, J., Vora, S., Pruitt, B.W., Tuttle, M., P R Iyer, E., Lin, S., Kiani, S., Guzman, C.D., Wiegand, D.J., et al. (2015). Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12, 326–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiplunkar, A.R., Curtis, B.C., Eades, G.L., Kane, M.S., Fox, S.J., Haar, J. L., and Lloyd, J.A. (2013). The Krüppel-like factor 2 and Krüppel-like factor 4 genes interact to maintain endothelial integrity in mouse embryonic vasculogenesis. BMC Dev Biol 13, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhaliwal, N.K., Miri, K., Davidson, S., Tamim El Jarkass, H., and Mitchell, J.A. (2018). KLF4 nuclear export requires ERK activation and initiates exit from naive pluripotency. Stem Cell Rep 10, 1308–1323.

    Article  CAS  Google Scholar 

  • Geng, T., Zhang, D., and Jiang, W. (2019). Epigenetic regulation of transition among different pluripotent states: concise review. Stem Cells 37, 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  • Giulitti, S., Pellegrini, M., Zorzan, I., Martini, P., Gagliano, O., Mutarelli, M., Ziller, M.J., Cacchiarelli, D., Romualdi, C., Elvassore, N., et al. (2019). Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nat Cell Biol 21, 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Gumireddy, K., Li, A., Gimotty, P.A., Klein-Szanto, A.J., Showe, L.C., Katsaros, D., Coukos, G., Zhang, L., and Huang, Q. (2009). KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol 11, 1297–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, G., Yang, J., Nichols, J., Hall, J.S., Eyres, I., Mansfield, W., and Smith, A. (2009). Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, W., Wang, S., Zhang, X., Shi, M., Duan, F., Hao, J., Gu, K., Quan, L., Wu, Y., Liang, Z., et al. (2021). Acidic pH transiently prevents the silencing of self-renewal and dampens microRNA function in embryonic stem cells. Sci Bull 66, 1319–1329.

    Article  CAS  Google Scholar 

  • Hanna, J., Cheng, A.W., Saha, K., Kim, J., Lengner, C.J., Soldner, F., Cassady, J.P., Muffat, J., Carey, B.W., and Jaenisch, R. (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci USA 107, 9222–9227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon, H., Waku, T., Azami, T., Khoa, L.T.P., Yanagisawa, J., Takahashi, S., and Ema, M. (2016). Comprehensive identification of Krüppel-like factor family members contributing to the self-renewal of mouse embryonic stem cells and cellular reprogramming. PLoS ONE 11, e0150715–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, J., Chan, Y.S., Loh, Y.H., Cai, J., Tong, G.Q., Lim, C.A., Robson, P., Zhong, S., and Ng, H.H. (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10, 353–360.

    Article  PubMed  Google Scholar 

  • Kurauchi, T., Izutsu, Y., and Maéno, M. (2010). Involvement of Neptune in induction of the hatching gland and neural crest in the Xenopus embryo. Differentiation 79, 251–259.

    Article  CAS  PubMed  Google Scholar 

  • Larson, M.H., Gilbert, L.A., Wang, X., Lim, W.A., Weissman, J.S., and Qi, L.S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8, 2180–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.S., Yu, Q., Shin, J.T., Sebzda, E., Bertozzi, C., Chen, M., Mericko, P., Stadtfeld, M., Zhou, D., Cheng, L., et al. (2006). Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 11, 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., and Belmonte, J.C.I. (2017). Ground rules of the pluripotency gene regulatory network. Nat Rev Genet 18, 180–191.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, K., Mikami, T., Oki, S., Iida, H., Andrabi, M., Boss, J.M., Yamaguchi, K., Shigenobu, S., and Kondoh, H. (2017). ChIP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network. Development 144, 1948–1958.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, D., Stadler, M.B., Rittirsch, M., Hess, D., Lukonin, I., Winzi, M., Smith, A., Buchholz, F., and Betschinger, J. (2020). Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2. EMBO J 39, e102591–10.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell 4, 487–492.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, J., and Smith, A. (2012). Pluripotency in the embryo and in culture. Cold Spring Harb Perspect Biol 4, a008128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastor, W.A., Chen, D., Liu, W., Kim, R., Sahakyan, A., Lukianchikov, A., Plath, K., Jacobsen, S.E., and Clark, A.T. (2016). Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontis, J., Planet, E., Offner, S., Turelli, P., Duc, J., Coudray, A., Theunissen, T.W., Jaenisch, R., and Trono, D. (2019). Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24, 724–735.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Presnell, J.S., Schnitzler, C.E., and Browne, W.E. (2015). KLF/SP transcription factor family evolution: expansion, diversification, and innovation in eukaryotes. Genome Biol Evol 7, 2289–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, D., Ye, S., Ruiz, B., Zhou, X., Liu, D., Zhang, Q., and Ying, Q.L. (2015). Klf2 and Tfcp2l1, two Wnt/β-catenin targets, act synergistically to induce and maintain naive pluripotency. Stem Cell Rep 5, 314–322.

    Article  CAS  Google Scholar 

  • Segre, J.A., Bauer, C., and Fuchs, E. (1999). Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22, 356–360.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, H., Ishizaka, T., Yanagi, K., Sone, R., Sunaga, Y., Ohga, R., and Kawahara, A. (2019). Characterization of biklf/klf17-deficient zebrafish in posterior lateral line neuromast and hatching gland development. Sci Rep 9, 13680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J., Mansfield, W., et al. (2014). Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda, M., Kurauchi, T., Yamazaki, T., Izutsu, Y., and Maéno, M. (2005). Neptune is involved in posterior axis and tail formation in Xenopus embryogenesis. Dev Dyn 234, 63–73.

    Article  CAS  PubMed  Google Scholar 

  • Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L., Gardner, R.L., and McKay, R.D.G. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199.

    Article  CAS  PubMed  Google Scholar 

  • Theunissen, T.W., Powell, B.E., Wang, H., Mitalipova, M., Faddah, D.A., Reddy, J., Fan, Z.P., Maetzel, D., Ganz, K., Shi, L., et al. (2014). Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 524–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Vliet, J., Crofts, L.A., Quinlan, K.G.R., Czolij, R., Perkins, A.C., and Crossley, M. (2006). Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 87, 474–482.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Wang, Z., He, M., Zhou, T., Niu, Y., Sun, S., Li, H., Zhang, C., Zhang, S., Liu, M., et al. (2020a). Krüppel-like factor 17 upregulates uterine corin expression and promotes spiral artery remodeling in pregnancy. Proc Natl Acad Sci USA 117, 19425–19434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S.H., Zhang, C., and Wang, Y. (2020b). microRNA regulation of pluripotent state transition. Essays Biochem 64, 947–954.

    Article  CAS  PubMed  Google Scholar 

  • Wani, M.A., Means Jr, R.T., and Lingrel, J.B. (1998). Loss of LKLF function results in embryonic lethality in mice. Transgenic Res 7, 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger, L., Ayyash, M., Novershtern, N., and Hanna, J.H. (2016). Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17, 155–169.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Z., Huang, K., Cai, C., Cai, L., Jiang, C.Y., Feng, Y., Liu, Z., Zeng, Q., Cheng, L., Sun, Y.E., et al. (2013). Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane, M., Ohtsuka, S., Matsuura, K., Nakamura, A., and Niwa, H. (2018). Overlapping function of Kruppel-like factor family members: targeting multiple transcription factors to maintain the naïve pluripotency of mouse embryonic stem cells. Development 145.

  • Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., et al. (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20, 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y.L., Zhang, C., Hao, J., Wang, X.L., Ming, J., Mi, L., Na, J., Hu, X., and Wang, Y. (2019). DPPA2/4 and SUMO E3 ligase PIAS4 opposingly regulate zygotic transcriptional program. PLoS Biol 17, e3000324–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, B., Liu, B., Hao, L., Zhu, X., Yang, L., Wang, S., Xia, P., Du, Y., Meng, S., Huang, G., et al. (2018). Klf4 glutamylation is required for cell reprogramming and early embryonic development in mice. Nat Commun 9, 1261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeo, J.C., Jiang, J., Tan, Z.Y., Yim, G.R., Ng, J.H., Göke, J., Kraus, P., Liang, H., Gonzales, K.A.U., Chong, H.C., et al. (2014). Klf2 is an essential factor that sustains ground state pluripotency. Cell Stem Cell 14, 864–872.

    Article  CAS  PubMed  Google Scholar 

  • Ying, Q.L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453, 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0107601 and 2021YFA0100200) and the National Natural Science Foundation of China (91940302, 32130017, 82070294 and 32025007). We would like to thank members of Wang laboratory for critical reading and discussion of the paper. We thank Dr. Haoyi Wang for the gift of human embryonic stem cells and help with 5iL culture conditions. We thank the Flow Cytometry Core at National Center for Protein Sciences at Peking University, particularly Hongxia Lv, Yinghua Guo and Huan Yang for technical help with flow cytometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiqing Cao or Yangming Wang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supplementary Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SH., Hao, J., Zhang, C. et al. KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. Sci. China Life Sci. 65, 1985–1997 (2022). https://doi.org/10.1007/s11427-021-2076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2076-x

Keywords

Navigation