Skip to main content
Log in

Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold

  • Resrearch Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) often results in an inhibitory environment at the injury site. In our previous studies, transplantation of a scaffold combined with stem cells was proven to induce neural regeneration in animal models of complete SCI. Based on these preclinical studies, collagen scaffolds loaded with the patients’ own bone marrow mononuclear cells or human umbilical cord mesenchymal stem cells were transplanted into SCI patients. Fifteen patients with acute complete SCI and 51 patients with chronic complete SCI were enrolled and followed up for 2 to 5 years. No serious adverse events related to functional scaffold transplantation were observed. Among the patients with acute SCI, five patients achieved expansion of their sensory positions and six patients recovered sensation in the bowel or bladder. Additionally, four patients regained voluntary walking ability accompanied by reconnection of neural signal transduction. Among patients with chronic SCI, 16 patients achieved expansion of their sensation level and 30 patients experienced enhanced reflexive defecation sensation or increased skin sweating below the injury site. Nearly half of the patients with chronic cervical SCI developed enhanced finger activity. These long-term follow-up results suggest that functional scaffold transplantation may represent a feasible treatment for patients with complete SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, M.M., and Hicks, A.L. (2005). Spasticity after spinal cord injury. Spinal Cord 43, 577–586.

    Article  CAS  PubMed  Google Scholar 

  • Assinck, P., Duncan, G.J., Hilton, B.J., Plemel, J.R., and Tetzlaff, W. (2017). Cell transplantation therapy for spinal cord injury. Nat Neurosci 20, 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett, R.D., Burley, S., Ip, M., Phillips, J.B., and Choi, D. (2020). Cell therapies for spinal cord injury: trends and challenges of current clinical trials. Neurosurgery 87, E456–E472.

    Article  PubMed  Google Scholar 

  • Cyranoski, D. (2019). Japan’s approval of stem-cell treatment for spinal-cord injury concerns scientists. Nature 565, 544–545.

    Article  CAS  PubMed  Google Scholar 

  • Ditunno, J.F., Little, J.W., Tessler, A., and Burns, A.S. (2004). Spinal shock revisited: a four-phase model. Spinal Cord 42, 383–395.

    Article  CAS  PubMed  Google Scholar 

  • Fan, C., Li, X., Xiao, Z., Zhao, Y., Liang, H., Wang, B., Han, S., Li, X., Xu, B., Wang, N., et al. (2017). A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater 51, 304–316.

    Article  CAS  PubMed  Google Scholar 

  • Fan, C., Li, X., Zhao, Y., Xiao, Z., Xue, W., Sun, J., Li, X., Zhuang, Y., Chen, Y., and Dai, J. (2018). Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomater Sci 6, 1723–1734.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, M.T., and Silver, J. (2008). CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209, 294–301.

    Article  CAS  PubMed  Google Scholar 

  • Frigon, A. (2017). The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 117, 2224–2241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Führmann, T., Anandakumaran, P.N., and Shoichet, M.S. (2017). Combinatorial therapies after spinal cord injury: how can biomaterials help? Adv Healthcare Mater 6, 1601130.

    Article  CAS  Google Scholar 

  • Gwak, Y.S., Hains, B.C., Johnson, K.M., and Hulsebosch, C.E. (2004). Effect of age at time of spinal cord injury on behavioral outcomes in rat. J Neurotrauma 21, 983–993.

    Article  PubMed  Google Scholar 

  • Haas, U., and Geng, V. (2008). Sensation of defecation in patients with spinal cord injury. Spinal Cord 46, 107–112.

    Article  CAS  PubMed  Google Scholar 

  • Han, Q., Jin, W., Xiao, Z., Ni, H., Wang, J., Kong, J., Wu, J., Liang, W., Chen, L., Zhao, Y., et al. (2010). The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 31, 9212–9220.

    Article  CAS  PubMed  Google Scholar 

  • Han, S., Li, X., Xiao, Z., and Dai, J. (2018a). Complete canine spinal cord transection model: a large animal model for the translational research of spinal cord regeneration. Sci China Life Sci 61, 115–117.

    Article  PubMed  Google Scholar 

  • Han, S., Wang, B., Jin, W., Xiao, Z., Li, X., Ding, W., Kapur, M., Chen, B., Yuan, B., Zhu, T., et al. (2015). The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 41, 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Han, S., Xiao, Z., Li, X., Zhao, H., Wang, B., Qiu, Z., Li, Z., Mei, X., Xu, B., Fan, C., et al. (2018b). Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Sci China Life Sci 61, 2–13.

    Article  CAS  PubMed  Google Scholar 

  • Han, S., Yin, W., Li, X., Wu, S., Cao, Y., Tan, J., Zhao, Y., Hou, X., Wang, L., Ren, C., et al. (2019). Pre-clinical evaluation of CBD-NT3 modified collagen scaffolds in completely spinal cord transected non-human primates. J Neurotrauma 36, 2316–2324.

    Article  PubMed  Google Scholar 

  • Hatch, M.N., Cushing, T.R., Carlson, G.D., and Chang, E.Y. (2018). Neuropathic pain and SCI: Identification and treatment strategies in the 21st century. J Neurol Sci 384, 75–83.

    Article  PubMed  Google Scholar 

  • Illis, L.S. (2012). Central nervous system regeneration does not occur. Spinal Cord 50, 259–263.

    Article  CAS  PubMed  Google Scholar 

  • Jung, D.I., Ha, J., Kang, B.T., Kim, J.W., Quan, F.S., Lee, J.H., Woo, E.J., and Park, H.M. (2009). A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285, 67–77.

    Article  PubMed  Google Scholar 

  • Kawano, O., Maeda, T., Mori, E., Takao, T., Sakai, H., Masuda, M., Morishita, Y., Hayashi, T., Kubota, K., Kobayakawa, K., et al. (2020). How much time is necessary to confirm the diagnosis of permanent complete cervical spinal cord injury? Spinal Cord 58, 284–289.

    Article  PubMed  Google Scholar 

  • Kirshblum, S.C., Burns, S.P., Biering-Sorensen, F., Donovan, W., Graves, D.E., Jha, A., Johansen, M., Jones, L., Krassioukov, A., Mulcahey, M.J., et al. (2011). International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34, 535–546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Liu, D., Xiao, Z., Zhao, Y., Han, S., Chen, B., and Dai, J. (2019). Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 197, 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Tan, J., Xiao, Z., Zhao, Y., Han, S., Liu, D., Yin, W., Li, J., Li, J., Wanggou, S., et al. (2017a). Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury. Sci Rep 7, 43559.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Zhao, Y., Cheng, S., Han, S., Shu, M., Chen, B., Chen, X., Tang, F., Wang, N., Tu, Y., et al. (2017b). Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials 137, 73–86.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H., Chen, B., Wang, B., Zhao, Y., Sun, W., and Dai, J. (2006). Novel nerve guidance material prepared from bovine aponeurosis. J Biomed Mater Res B Appl Biomater 79A, 591–598.

    Article  CAS  Google Scholar 

  • Liu, D., Li, X., Xiao, Z., Yin, W., Zhao, Y., Tan, J., Chen, B., Jiang, X., and Dai, J. (2019). Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials 214, 119230.

    Article  CAS  PubMed  Google Scholar 

  • Mothe, A.J., and Tator, C.H. (2012). Advances in stem cell therapy for spinal cord injury. J Clin Invest 122, 3824–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raineteau, O., and Schwab, M.E. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2, 263–273.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig, E.S., Courtine, G., Jindrich, D.L., Brock, J.H., Ferguson, A. R., Strand, S.C., Nout, Y.S., Roy, R.R., Miller, D.M., Beattie, M.S., et al. (2010). Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13, 1505–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupp, R. (2020). Spinal cord lesions. Handb Clin Neurol 168, 51–65.

    Article  PubMed  Google Scholar 

  • Samdani, A.F., Paul, C., Betz, R.R., Fischer, I., and Neuhuber, B. (2009). Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord. Spine 34, 2605–2612.

    Article  PubMed  Google Scholar 

  • Scivoletto, G., Tamburella, F., Laurenza, L., Torre, M., and Molinari, M. (2014a). Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury. Front Hum Neurosci 8, 141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scivoletto, G., Tamburella, F., Laurenza, L., Torre, M., Molinari, M., and Ditunno, J.F. (2014b). Walking index for spinal cord injury version II in acute spinal cord injury: reliability and reproducibility. Spinal Cord 52, 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Siegenthaler, M.M., Ammon, D.L., and Keirstead, H.S. (2008). Myelin pathogenesis and functional deficits following SCI are age-associated. Exp Neurol 213, 363–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotkin, J.R., Pritchard, C.D., Luque, B., Ye, J., Layer, R.T., Lawrence, M. S., O’Shea, T.M., Roy, R.R., Zhong, H., Vollenweider, I., et al. (2017). Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials 123, 63–76.

    Article  CAS  PubMed  Google Scholar 

  • Teng, Y.D., Lavik, E.B., Qu, X., Park, K.I., Ourednik, J., Zurakowski, D., Langer, R., and Snyder, E.Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99, 3024–3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodore, N., Hlubek, R., Danielson, J., Neff, K., Vaickus, L., Ulich, T.R., and Ropper, A.E. (2016). First human implantation of a bioresorbable polymer scaffold for acute traumatic spinal cord injury. Neurosurgery 79, E305–E312.

    Article  PubMed  Google Scholar 

  • von Leden, R.E., Khayrullina, G., Moritz, K.E., and Byrnes, K.R. (2017). Age exacerbates microglial activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional recovery in a middle-aged rodent model of spinal cord injury. J Neuroinflamm 14, 161.

    Article  CAS  Google Scholar 

  • Wang, N., Xiao, Z., Zhao, Y., Wang, B., Li, X., Li, J., and Dai, J. (2018). Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. J Tissue Eng Regen Med 12.

  • Willison, A.G., Smith, S., Davies, B.M., Kotter, M.R.N., and Barnett, S.C. (2020). A scoping review of trials for cell-based therapies in human spinal cord injury. Spinal Cord 58, 844–856.

    Article  PubMed  Google Scholar 

  • Xiao, Z., Tang, F., Tang, J., Yang, H., Zhao, Y., Chen, B., Han, S., Wang, N., Li, X., Cheng, S., et al. (2016). One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci 59, 647–655.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Z., Tang, F., Zhao, Y., Han, G., Yin, N., Li, X., Chen, B., Han, S., Jiang, X., Yun, C., et al. (2018). Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells. Cell Transplant 27, 907–915.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, B., Zhao, Y., Xiao, Z., Wang, B., Liang, H., Li, X., Fang, Y., Han, S., Li, X., Fan, C., et al. (2017). A dual functional scaffold tethered with EGFR antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair. Adv Healthcare Mater 6, 1601279.

    Article  CAS  Google Scholar 

  • Xue, X., Shu, M., Xiao, Z., Zhao, Y., Li, X., Zhang, H., Fan, Y., Wu, X., Chen, B., Xu, B., et al. (2021). Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci., doi: https://doi.org/10.1007/s11427-020-1901-4.

  • Yiu, G., and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7, 617–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Tang, F., Xiao, Z., Han, G., Wang, N., Yin, N., Chen, B., Jiang, X., Yun, C., Han, W., et al. (2017a). Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant 26, 891–900.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Xiao, Z., Chen, B., and Dai, J. (2017b). The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis 13, 63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81891000) and the National Key Research and Development Program of China (2016YFC1101504 and 2016YFC1101505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuxun Hou, Sai Zhang or Jianwu Dai.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Tang, J., Zhao, Y. et al. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. Sci. China Life Sci. 65, 909–926 (2022). https://doi.org/10.1007/s11427-021-1985-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1985-5

Keywords

Navigation