Skip to main content
Log in

Single cell transcriptomic analysis identifies novel vascular smooth muscle subsets under high hydrostatic pressure

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Although some co-risk factors and hemodynamic alterations are involved in hypertension progression, their direct biomechanical effects are unclear. Here, we constructed a high-hydrostatic-pressure cell-culture system to imitate constant hypertension and identified novel molecular classifications of human aortic smooth muscle cells (HASMCs) by single-cell transcriptome analysis. Under 100-mmHg (analogous to healthy human blood pressure) or 200-mmHg (analogous to hypertension) hydrostatic pressure for 48 h, HASMCs showed six distinct vascular SMC (VSMC) clusters according to differential gene expression and gene ontology enrichment analysis. Especially, two novel HASMC subsets were identified, named the inflammatory subset, with CXCL2, CXCL3 and CCL2 as markers, and the endothelial-function inhibitory subset, with AKR1C2, AKR1C3, SERPINF1 as markers. The inflammatory subset promoted CXCL2&3 and CCL2 chemokine expression and secretion, triggering monocyte migration; the endothelial-function inhibitory subset secreted SERPINF1 and accelerated prostaglandin F2α generation to inhibit angiogenesis. The expression of the two VSMC subsets was greatly increased in arterial media from patients with hypertension and experimental animal models of hypertension. Collectively, we identified high hydrostatic pressure directly driving VSMCs into two new subsets, promoting or exacerbating endothelial dysfunction, thereby contributing to the pathogenesis of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo, A.D., Bowser, S.S., Gerritsen, M.E., and Bizios, R. (1993). Morphological and proliferative responses of endothelial cells to hydrostatic pressure: Role of fibroblast growth factor. J Cell Physiol 157, 603–614.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M.R., Sinha, S., and Owens, G.K. (2016). Vascular smooth muscle cells in atherosclerosis. Circ Res 118, 692–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brault, S., Martinez-Bermudez, A.K., Marrache, A.M., Gobeil Jr, F., Hou, X., Beauchamp, M., Quiniou, C., Almazan, G., Lachance, C., Roberts Ii, J., et al. (2003). Selective neuromicrovascular endothelial cell death by 8-iso-prostaglandin F. Stroke 34, 776–782.

    Article  CAS  PubMed  Google Scholar 

  • Capers Iv, Q., Alexander, R.W., Lou, P., Hector De Leon, P., Wilcox, J.N., Ishizaka, N., Howard, A.B., and Taylor, W.R. (1997). Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension 30, 1397–1402.

    Article  CAS  PubMed  Google Scholar 

  • Carrick, D., Haig, C., Maznyczka, A.M., Carberry, J., Mangion, K., Ahmed, N., Yue May, V.T., McEntegart, M., Petrie, M.C., Eteiba, H., et al. (2018). Hypertension, microvascular pathology, and prognosis after an acute myocardial infarction. Hypertension 72, 720–730.

    Article  CAS  PubMed  Google Scholar 

  • Chan, C.T., Moore, J.P., Budzyn, K., Guida, E., Diep, H., Vinh, A., Jones, E.S., Widdop, R.E., Armitage, J.A., Sakkal, S., et al. (2012). Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt-treated mice. Hypertension 60, 1207–1212.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Tso, A.W.K., Cheung, B.M.Y., Law, L.S.C., Ong, K.L., Wat, N. M.S., Janus, E.D., Xu, A., and Lam, K.S.L. (2012). Plasma concentration of pigment epithelium-derived factor is closely associated with blood pressure and predicts incident hypertension in chinese: A 10-year prospective study. Clin Endocrinol 76, 506–513.

    Article  CAS  Google Scholar 

  • Chen, L.J., Wei, S.Y., Chiu, J.J. (2013). Mechanical regulation of epigenetics in vascular biology and pathobiology. J Cell Mol Med 17, 437–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson, D.W., Volpert, O.V., Gillis, P., Crawford, S.E., Xu, H., Benedict, W., and Bouck, N.P. (1999). Pigment epithelium-derived factor: A potent inhibitor of angiogenesis. Science 285, 245–248.

    Article  CAS  PubMed  Google Scholar 

  • Dull, R.O., Jo, H., Sill, H., Hollis, T.M., and Tarbell, J.M. (1991). The effect of varying albumin concentration and hydrostatic pressure on hydraulic conductivity and albumin permeability of cultured endothelial monolayers. Microvasc Res 41, 390–407.

    Article  CAS  PubMed  Google Scholar 

  • Evans, P.C., and Kwak, B.R. (2013). Biomechanical factors in cardiovascular disease. Cardiovasc Res 99, 229–231.

    Article  CAS  PubMed  Google Scholar 

  • Frismantiene, A., Philippova, M., Erne, P., and Resink, T.J. (2018). Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 52, 48–64.

    Article  CAS  PubMed  Google Scholar 

  • Grbovic, L., and Jovanovic, A. (1996). Pregnancy: Effect of the vascular endothelium on contractions induced by prostaglandin F2α in isolated pregnant guinea pig uterine artery. Hum Reprod 11, 2041–2047.

    Article  CAS  PubMed  Google Scholar 

  • Group, S.R., Wright, J.T., Jr., Williamson, J.D., Whelton, P.K., Snyder, J. K., Sink, K.M., Rocco, M.V., Reboussin, D.M., Rahman, M., Oparil, S., et al. (2015). A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373, 2103–2116.

    Article  CAS  Google Scholar 

  • Heo, K.S., Fujiwara, K., and Abe, J. (2014). Shear stress and atherosclerosis. Mol Cells 37, 435–440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughson, M.D., Gobe, G.C., Hoy, W.E., Manning Jr, R.D., Douglas-Denton, R., and Bertram, J.F. (2008). Associations of glomerular number and birth weight with clinicopathological features of african americans and whites. Am J Kidney Dis 52, 18–28.

    Article  PubMed  Google Scholar 

  • Ishibashi, M., Hiasa, K., Zhao, Q., Inoue, S., Ohtani, K., Kitamoto, S., Tsuchihashi, M., Sugaya, T., Charo, I.F., Kura, S., et al. (2004). Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ Res 94, 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  • Islam, M.S. (2017). Hypertension: From basic research to clinical practice. Adv Exp Med Biol 956, 1–2.

    PubMed  Google Scholar 

  • January, C.T., Wann, L.S., Calkins, H., Chen, L.Y., Cigarroa, J.E., Cleveland Jr. J.C., Ellinor, P.T., Ezekowitz, M.D., Field, M.E., Furie, K.L., et al. (2019). 2019 AHA/ACC/HRS focused update of the 2014 aha/acc/hrs guideline for the management of patients with atrial fibrillation: A report of the american college of cardiology/american heart association task force on clinical practice guidelines and the heart rhythm society. J Am Coll Cardiol 74, 104–132.

    Article  PubMed  Google Scholar 

  • Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K., and He, J. (2005). Global burden of hypertension: Analysis of worldwide data. Lancet 365, 217–223.

    Article  PubMed  Google Scholar 

  • Konukoglu, D., Uzun, H. (2017). Endothelial dysfunction and hypertension. Adv Exp Med Biol 956, 511–540.

    Article  PubMed  Google Scholar 

  • Leitinger, N., Huber, J., Rizza, C., Mechtcheriakova, D., Bochkov, V., Koshelnick, Y., Berliner, J.A., and Binder, B.R. (2001). The isoprostane 8-iso-PGF stimulates endothelial cells to bind monocytes: difference to thromboxane-mediated endothelial activation. FASEB J 15, 1254–1256.

    Article  CAS  PubMed  Google Scholar 

  • Leung, C.S., Yang, K.Y., Li, X., Chan, V.W., Ku, M., Waldmann, H., Hori, S., Tsang, J.C.H., Lo, Y.M.D., and Lui, K.O. (2018a). Single-cell transcriptomics reveal that PD-1 mediates immune tolerance by regulating proliferation of regulatory t cells. Genome Med 10, 71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leung, O.M., Li, J., Li, X., Chan, V.W., Yang, K.Y., Ku, M., Ji, L., Sun, H., Waldmann, H., Tian, X.Y., et al. (2018b). Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes. Cell Rep 24, 1610–1626.

    Article  CAS  PubMed  Google Scholar 

  • Levy, B.I., Ambrosio, G., Pries, A.R., and Struijker-Boudier, H.A.J. (2001). Microcirculation in hypertension: A new target for treatment. Circulation 104, 735–740.

    Article  CAS  PubMed  Google Scholar 

  • Liang, C., Yang, K.Y., Chan, V.W., Li, X., Fung, T.H.W., Wu, Y., Tian, X. Y., Huang, Y., Qin, L., Lau, J.Y.W., et al. (2020). CD8+ T-cell plasticity regulates vascular regeneration in type-2 diabetes. Theranostics 10, 4217–4232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMaster, W.G., Kirabo, A., Madhur, M.S., and Harrison, D.G. (2015). Inflammation, immunity, and hypertensive end-organ damage. Circ Res 116, 1022–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehaffey, E., and Majid, D.S.A. (2017). Tumor necrosis factor-α, kidney function, and hypertension. Am J Physiol Renal Physiol 313, F1005–F1008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikolajczyk, T.P., and Guzik, T.J. (2019). Adaptive immunity in hypertension. Curr Hypertens Rep 21, 68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Misárková, E., Behuliak, M., Bencze, M., and Zicha, J. (2016). Excitation-contraction coupling and excitation-transcription coupling in blood vessels: Their possible interactions in hypertensive vascular remodeling. Physiol Res 65, 173–191.

    Article  PubMed  Google Scholar 

  • Nakadate, H., Minamitani, H., Aomura, S. (2010). Combinations of hydrostatic pressure and shear stress influence morphology and adhesion molecules in cultured endothelial cells. Conf Proc IEEE Eng Med Biol Soc 2010, 3812–3815.

  • Nguyen, T., Toussaint, J., Xue, Y., Raval, C., Cancel, L., Russell, S., Shou, Y., Sedes, O., Sun, Y., Yakobov, R., et al. (2015). Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium. Am J Physiol Heart Circ Physiol 308, H1051–H1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi, T., Sakamoto, N., Iwao, A., and Sato, M. (2003). Oxygen tension modulates Ca2+ response to flow stimulus in endothelial cells exposed to hydrostatic pressure. Technol Health Care 11, 263–274.

    Article  PubMed  Google Scholar 

  • Pedrinelli, R., Ballo, P., Fiorentini, C., Denti, S., Galderisi, M., Ganau, A., Germanò, G., Innelli, P., Paini, A., Perlini, S., et al. (2012). Hypertension and acute myocardial infarction. J Cardiovasc Med 13, 194–202.

    Article  Google Scholar 

  • Prystopiuk, V., Fels, B., Simon, C.S., Liashkovich, I., Pasrednik, D., Kronlage, C., Wedlich-Söldner, R., Oberleithner, H., and Fels, J. (2018). A two-phase response of endothelial cells to hydrostatic pressure. J Cell Sci 131, jcs206920.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, J., Zheng, Y., Hu, J., Liao, D., Gregersen, H., Deng, X., Fan, Y., and Wang, G. (2014). Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 11, 20130852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rapsomaniki, E., Timmis, A., George, J., Pujades-Rodriguez, M., Shah, A. D., Denaxas, S., White, I.R., Caulfield, M.J., Deanfield, J.E., Smeeth, L., et al. (2014). Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 383, 1899–1911.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Iturbe, B., Pons, H., and Johnson, R.J. (2017). Role of the immune system in hypertension. Physiol Rev 97, 1127–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rychli, K., Kaun, C., Hohensinner, P.J., Dorfner, A.J., Pfaffenberger, S., Niessner, A., Bauer, M., Dietl, W., Podesser, B.K., Maurer, G., et al. (2010). The anti-angiogenic factor PEDF is present in the human heart and is regulated by anoxia in cardiac myocytes and fibroblasts. J Cell Mol Med 14, 198–205.

    Article  CAS  PubMed  Google Scholar 

  • Sanidas, E., Papadopoulos, D.P., Velliou, M., Tsioufis, K., Mantzourani, M., Iliopoulos, D., Perrea, D., Barbetseas, J., and Papademetriou, V. (2018). The role of angiogenesis inhibitors in hypertension: following “ariadne’s Thread”. Am J Hypertens 31, 961–969.

    Article  CAS  PubMed  Google Scholar 

  • Santisteban, M.M., Ahmari, N., Carvajal, J.M., Zingler, M.B., Qi, Y., Kim, S., Joseph, J., Garcia-Pereira, F., Johnson, R.D., Shenoy, V., et al. (2015). Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res 117, 178–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, E.A., Bizios, R., Medow, M.S., and Gerritsen, M.E. (1999). Exposure of human vascular endothelial cells to sustained hydrostatic pressure stimulates proliferation. Circ Res 84, 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Simoni, J., Simoni, G., Griswold, J.A., Moeller, J.F., Tsikouris, J.P., Khanna, A., Roongsritong, C., and Wesson, D.E. (2006) Role of free hemoglobin in 8-iso prostaglandin F2-alpha synthesis in chronic renal failure and its impact on CD163-Hb scavenger receptor and on coronary artery endothelium. ASAIO J 52, 652–661.

    Article  CAS  PubMed  Google Scholar 

  • Sinreih, M., Anko, M., Kene, N.H., Kocbek, V., and Rižner, T.L. (2015). Expression of AKR1B1, AKR1C3 and other genes of prostaglandin F2α biosynthesis and action in ovarian endometriosis tissue and in model cell lines Chem Biol Interact 234, 320–331

    Article  CAS  PubMed  Google Scholar 

  • Sommers, S.C., Relman, A.S., Smithwick, R.H. (1958). Histologic studies of kidney biopsy specimens from patients with hypertension Am J Pathol 34: 685–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Zhao, M., Liu, A., Lv, M., Zhang, J., Li, Y., Yang, X., and Wu, Z. (2018). Shear stress induces phenotypic modulation of vascular smooth muscle cells via AMPK/mTOR/ULK1-mediated autophagy. Cell Mol Neurobiol 38, 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Thoumine, O., Nerem, R.M., and Girard, F.R. (1995). Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells. In Vitro Cell Dev Biol Anim 31, 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Zhao, X.C., Cui, W., Ma, Y.Q., Ren, H.L., Zhou, X., Fassett, J., Yang, Y.Z., Chen, Y., Xia, Y. L., et al. (2016). Genetic and pharmacologic inhibition of the chemokine receptor CXCR2 prevents experimental hypertension and vascular dysfunction. Circulation 134, 1353–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Zhang, Y.L., Lin, Q.Y., Liu, Y., Guan, X.M., Ma, X.L., Cao, H.J., Liu, Y., Bai, J., Xia, Y. L., et al. (2018). CXCL1–CXCR2 axis mediates angiotensin II-induced cardiac hypertrophy and remodelling through regulation of monocyte infiltration. Eur Heart J 39, 1818–1831.

    Article  CAS  PubMed  Google Scholar 

  • Yoda, T., Kikuchi, K., Miki, Y., Onodera, Y., Hata, S., Takagi, K., Nakamura, Y., Hirakawa, H., Ishida, T., Suzuki, T., et al. (2015). 11β-Prostaglandin F, a bioactive metabolite catalyzed by AKR1C3, stimulates prostaglandin F receptor and induces slug expression in breast cancer. Mol Cell Endocrinol 413, 236–247.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Lucitt, M.B., Stubbe, J., Cheng, Y., Friis, U.G., Hansen, P.B., Jensen, B.L., Smyth, E.M., and FitzGerald, G.A. (2009) Prostaglandin F elevates blood pressure and promotes atherosclerosis. Proc Natl Acad Sci USA 106, 7985–7990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Li, Y.S., and Chien, S. (2014). Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol 34, 2191–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFC1312703), CAMS Innovation Fund for Medical Sciences (CIFMS, 2016-12M1-006), the National Natural Science Foundation of China (81630014, 81825002, 81800367, 81870318, 81670379), and Beijing Outstanding Young Scientist Program (BJJWZYJH01201910023029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Geng or Jun Cai.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhang, H., Bai, Y. et al. Single cell transcriptomic analysis identifies novel vascular smooth muscle subsets under high hydrostatic pressure. Sci. China Life Sci. 64, 1677–1690 (2021). https://doi.org/10.1007/s11427-020-1852-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1852-x

Keywords

Navigation