Skip to main content
Log in

The new chimeric chiron genes evolved essential roles in zebrafish embryonic development by regulating NAD+ levels

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The origination of new genes is important for generating genetic novelties for adaptive evolution and biological diversity. However, their potential roles in embryonic development, evolutionary processes into ancient networks, and contributions to adaptive evolution remain poorly investigated. Here, we identified a novel chimeric gene family, the chiron family, and explored its genetic basis and functional evolution underlying the adaptive evolution of Danioninae fishes. The ancestral chiron gene originated through retroposition of nampt in Danioninae 48–54 million years ago (Mya) and expanded into five duplicates (chiron1–5) in zebrafish 1–4 Mya. The chiron genes (chirons) likely originated in embryonic development and gradually extended their expression in the testis. Functional experiments showed that chirons were essential for zebrafish embryo development. By integrating into the NAD+ synthesis pathway, chirons could directly catalyze the NAD+ rate-limiting reaction and probably impact two energy metabolism genes (nmnat1 and naprt) to be under positive selection in Danioninae fishes. Together, these results mainly demonstrated that the origin of new chimeric chiron genes may be involved in adaptive evolution by integrating and impacting the NAD+ biosynthetic pathway. This coevolution may contribute to the physiological adaptation of Danioninae fishes to widespread and varied biomes in Southeast Asian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assis, R., and Bachtrog, D. (2013). Neofunctionalization of young duplicate genes in Drosophila. Proc Natl Acad Sci USA 110, 17409–17414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger, F., Lau, C., and Ziegler, M. (2007). Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1. Proc Natl Acad Sci USA 104, 3765–3770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergthorsson, U., Andersson, D.I., and Roth, J.R. (2007). Ohno’s dilemma: Evolution of new genes under continuous selection. Proc Natl Acad Sci USA 104, 17004–17009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berto, S., and Nowick, K. (2018). Species-specific changes in a primate transcription factor network provide insights into the molecular evolution of the primate prefrontal cortex. Genome Biol Evol 10, 2023–2036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betrán, E., Thornton, K., and Long, M. (2002). Retroposed new genes out of the X in Drosophila. Genome Res 12, 1854–1859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biefer, H.R.C., Heinbokel, T., Uehara, H., Camacho, V., Minami, K., Nian, Y., Koduru, S., El Fatimy, R., Ghiran, I., Trachtenberg, A.J., et al. (2018). Mast cells regulate CD4+ T-cell differentiation in the absence of antigen presentation. J Allergy Clin Immunol 142, 1894–1908.e7.

    Article  PubMed Central  CAS  Google Scholar 

  • Blum, M., De Robertis, E.M., Wallingford, J.B., and Niehrs, C. (2015). Morpholinos: antisense and sensibility. Dev Cell 35, 145–149.

    Article  CAS  PubMed  Google Scholar 

  • Boutant, M., and Cantó, C. (2014). SIRT1 metabolic actions: Integrating recent advances from mouse models. Mol Metab 3, 5–18.

    Article  CAS  PubMed  Google Scholar 

  • Burgos, E.S., Ho, M.C., Almo, S.C., and Schramm, V.L. (2009). A phosphoenzyme mimic, overlapping catalytic sites and reaction coordinate motion for human NAMPT. Proc Natl Acad Sci USA 106, 13748–13753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, J., Zhao, R., Jiang, H., and Wang, W. (2008). De Novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179, 487–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantó, C., Menzies, K.J., and Auwerx, J. (2015). NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22, 31–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capra, J.A., Pollard, K.S., and Singh, M. (2010). Novel genes exhibit distinct patterns of function acquisition and network integration. Genome Biol 11, R127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Ni, X., Krinsky, B.H., Zhang, Y.E., Vibranovski, M.D., White, K. P., and Long, M. (2012). Reshaping of global gene expression networks and sex-biased gene expression by integration of a young gene. EMBO J 31, 2798–2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Zhang, Y.E., and Long, M. (2010). New genes in Drosophila quickly become essential. Science 330, 1682–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Krinsky, B.H., and Long, M. (2013). New genes as drivers of phenotypic evolution. Nat Rev Genet 14, 645–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitramuthu, B.P., and Bennett, H.P.J. (2013). High resolution whole mount in situ hybridization within zebrafish embryos to study gene expression and function. J Vis Exp, doi: 10.3791/50644.

  • Dahl, T.B., Holm, S., Aukrust, P., and Halvorsen, B. (2012). Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology. Annu Rev Nutr 32, 229–243.

    Article  CAS  PubMed  Google Scholar 

  • Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165.

    Article  CAS  PubMed  Google Scholar 

  • Davies, T.J., Savolainen, V., Chase, M.W., Moat, J., and Barraclough, T.G. (2004). Environmental energy and evolutionary rates in flowering plants. Proc R Soc Lond B 271, 2195–2200.

    Article  Google Scholar 

  • Denu, J.M. (2007). Vitamins and aging: pathways to NAD+ synthesis. Cell 129, 453–454.

    Article  CAS  PubMed  Google Scholar 

  • Domazet-Lošo, T., and Tautz, D. (2010). A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468, 815–818.

    Article  PubMed  CAS  Google Scholar 

  • Dong, W.R., Xiang, L.X., and Shao, J.Z. (2009). Pre-B cell colony-enhancing factor in lower vertebrates: first evidence of this cytokine being involved in antioxidant activity by reconstruction of a novel NAD salvage pathway in E. coli. Int J Biochem Cell Biol 41, 1127–1137.

    Article  CAS  PubMed  Google Scholar 

  • Engel, W., Hof, J.O., and Wolf, U. (1970). Gene duplication by polyploid evolution: the isoenzyme of the sorbitol dehydrogenase in herring- and salmon-like fishes (Isospondyli). Humangenetik 9, 157–163.

    CAS  PubMed  Google Scholar 

  • Fang, C., Guan, L., Zhong, Z., Gan, X., and He, S. (2015). Analysis of the nicotinamide phosphoribosyltransferase family provides insight into vertebrate adaptation to different oxygen levels during the water-to-land transition. FEBS J 282, 2858–2878.

    Article  CAS  PubMed  Google Scholar 

  • Fang, C., Zou, C., Fu, Y., Li, J., Li, Y., Ma, Y., Zhao, S., and Li, C. (2018). DNA methylation changes and evolution of RNA-based duplication in Sus scrofa: based on a two-step strategy. Epigenomics 10, 199–218.

    Article  CAS  PubMed  Google Scholar 

  • Fang, F. (2003). Phylogenetic analysis of the Asian cyprinid genus Danio (Teleostei, Cyprinidae). Copeia, 714–728.

  • Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.L., and Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, B., Chen, M., Zou, M., Long, M., and He, S. (2010). The rapid generation of chimerical genes expanding protein diversity in zebrafish. BMC Genomics 11, 657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garavaglia, S., D’Angelo, I., Emanuelli, M., Carnevali, F., Pierella, F., Magni, G., and Rizzi, M. (2002). Structure of human NMN adenylyltransferase. J Biol Chem 277, 8524–8530.

    Article  CAS  PubMed  Google Scholar 

  • Garten, A., Schuster, S., Penke, M., Gorski, T., de Giorgis, T., and Kiess, W. (2015). Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol 11, 535–546.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, W. (1978). Why genes in pieces? Nature 271, 501.

    Article  CAS  PubMed  Google Scholar 

  • Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307–321.

    Article  CAS  PubMed  Google Scholar 

  • Hardison, R.C., Roskin, K.M., Yang, S., Diekhans, M., Kent, W.J., Weber, R., Elnitski, L., Li, J., O’Connor, M., Kolbe, D., et al. (2003). Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res 13, 13–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinen, T.J.A.J., Staubach, F., Häming, D., and Tautz, D. (2009). Emergence of a new gene from an intergenic region. Curr Biol 19, 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S., and Imai, S.I. (2018). NAD+ biosynthesis, aging, and disease. F1000Res 7, 132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaessmann, H. (2010). Origins, evolution, and phenotypic impact of new genes. Genome Res 20, 1313–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinka, A.T., Varga, K.M., Gerrard, D.T., Preibisch, S., Corcoran, D.L., Jarrells, J., Ohler, U., Bergman, C.M., and Tomancak, P. (2010). Gene expression divergence recapitulates the developmental hourglass model. Nature 468, 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10, 845–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klomp, J., Athy, D., Kwan, C.W., Bloch, N.I., Sandmann, T., Lemke, S., and Schmidt-Ott, U. (2015). A cysteine-clamp gene drives embryo polarity in the midge Chironomus. Science 348, 1040–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., and Hedges, S.B. (2011). TimeTree2: species divergence times on the iPhone. Bioinformatics 27, 2023–2024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, D., Dong, Y., Jiang, Y., Jiang, H., Cai, J., and Wang, W. (2010). A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res 20, 408–420.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Qi, Y., Liang, Q., Xu, X., Hu, F., Wang, J., Xiao, J., Wang, S., Li, W., Tao, M., et al. (2018). The chimeric genes in the hybrid lineage of Carassius auratus cuvieri (♀)×Carassius auratus red var. (♂). Sci China Life Sci 61, 1079–1089.

    Article  PubMed  Google Scholar 

  • Long, M., Betrán, E., Thornton, K., and Wang, W. (2003). The origin of new genes: Glimpses from the young and old. Nat Rev Genet 4, 865–875.

    Article  CAS  PubMed  Google Scholar 

  • Long, M., and Langley, C.H. (1993). Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Long, M., Rosenberg, C., and Gilbert, W. (1995). Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci USA 92, 12495–12499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, M., VanKuren, N.W., Chen, S., and Vibranovski, M.D. (2013). New gene evolution: little did we know. Annu Rev Genet 47, 307–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loppin, B., Lepetit, D., Dorus, S., Couble, P., and Karr, T.L. (2005). Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability. Curr Biol 15, 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M., O’Hely, M., Walsh, B., and Force, A. (2001). The probability of preservation of a newly arisen gene duplicate. Genetics 159, 1789–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marletta, A.S., Massarotti, A., Orsomando, G., Magni, G., Rizzi, M., and Garavaglia, S. (2015). Crystal structure of human nicotinic acid phosphoribosyltransferase. FEBS Open Bio 5, 419–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, A.P., and Palumbi, S.R. (1993). Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90, 4087–4091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuno, M., Compagnon, V., Schoch, G.A., Schmitt, M., Debayle, D., Bassard, J.E., Pollet, B., Hehn, A., Heintz, D., Ullmann, P., et al. (2009). Evolution of a novel phenolic pathway for pollen development. Science 325, 1688–1692.

    Article  CAS  PubMed  Google Scholar 

  • Mayden, R.L., Tang, K.L., Conway, K.W., Freyhof, J., Chamberlain, S., Haskins, M., Schneider, L., Sudkamp, M., Wood, R.M., Agnew, M., et al. (2007). Phylogenetic relationships of Danio within the order Cypriniformes: a framework for comparative and evolutionary studies of a model species. J Exp Zool 308B, 642–654.

    Article  CAS  Google Scholar 

  • McLure, K.G., Takagi, M., and Kastan, M.B. (2004). NAD+ modulates p53 DNA binding specificity and function. Mol Cell Biol 24, 9958–9967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLysaght, A., and Hurst, L.D. (2016). Open questions in the study of de novo genes: what, how and why. Nat Rev Genet 17, 567–578.

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Mu, W.L., Zhang, Q.J., Tang, X.Q., Fu, W.Y., Zheng, W., Lu, Y.B., Li, H. L., Wei, Y.S., Li, L., She, Z.G., et al. (2014). Overexpression of a dominant-negative mutant of SIRT1 in mouse heart causes cardiomyocyte apoptosis and early-onset heart failure. Sci China Life Sci 57, 915–924.

    Article  CAS  PubMed  Google Scholar 

  • Nasevicius, A., and Ekker, S.C. (2000). Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26, 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Norton, W., and Bally-Cuif, L. (2010). Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci 11, 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ognjanovic, S., Bao, S., Yamamoto, S.Y., Garibay-Tupas, J., Samal, B., and Bryant-Greenwood, G.D. (2001). Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. J Mol Endocrinol 26, 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, S., Wolf, U., and Atkin, N.B. (1968). Evolution from fish to mammals by gene duplication. Hereditas 59, 169–187.

    Article  CAS  PubMed  Google Scholar 

  • Pan, D., and Zhang, L. (2009). Burst of young retrogenes and independent retrogene formation in mammals. PLoS ONE 4, e5040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parichy, D.M. (2015). Advancing biology through a deeper understanding of zebrafish ecology and evolution. eLife 4, e05635.

    Article  PubMed Central  Google Scholar 

  • Patthy, L. (2008). Protein Evolution, 2nd ed. (Oxford: Wiley-Blackwell).

    Google Scholar 

  • Pfister, N.T., Yoh, K.E., and Prives, C. (2014). p53, DNA damage, and NAD+ homeostasis. Cell Cycle 13, 1661–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piasecka, B., Lichocki, P., Moretti, S., Bergmann, S., and Robinson-Rechavi, M. (2013). The hourglass and the early conservation models—co-existing patterns of developmental constraints in vertebrates. PLoS Genet 9, e1003476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragsdale, E.J., Müller, M.R., Rödelsperger, C., and Sommer, R.J. (2013). A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155, 922–933.

    Article  CAS  PubMed  Google Scholar 

  • Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., and Ekker, S.C. (2007). p53 activation by knockdown technologies. PLoS Genet 3, e78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogers, R.L., and Hartl, D.L. (2012). Chimeric genes as a source of rapid evolution in Drosophila melanogaster. Mol Biol Evol 29, 517–529.

    Article  CAS  PubMed  Google Scholar 

  • Ross, B.D., Rosin, L., Thomae, A.W., Hiatt, M.A., Vermaak, D., de la Cruz, A.F.A., Imhof, A., Mellone, B.G., and Malik, H.S. (2013). Stepwise evolution of essential centromere function in a Drosophila neogene. Science 340, 1211–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux, J., and Robinson-Rechavi, M. (2008). Developmental constraints on vertebrate genome evolution. PLoS Genet 4, e1000311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Orera, J., Verdaguer-Grau, P., Villanueva-Cañas, J.L., Messeguer, X., and Albà, M.M. (2018). Translation of neutrally evolving peptides provides a basis for de novo gene evolution. Nat Ecol Evol 2, 890–896.

    Article  PubMed  Google Scholar 

  • Shao, Y., Chen, C., Shen, H., He, B.Z., Yu, D., Jiang, S., Zhao, S., Gao, Z., Zhu, Z., Chen, X., et al. (2019). GenTree, an integrated resource for analyzing the evolution and function of primate-specific coding genes. Genome Res 29, 682–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, K.L., Agnew, M.K., Hirt, M.V., Sado, T., Schneider, L.M., Freyhof, J., Sulaiman, Z., Swartz, E., Vidthayanon, C., Miya, M., et al. (2010). Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Mol Phylogenet Evol 57, 189–214.

    Article  PubMed  Google Scholar 

  • Thomas, J.A., Welch, J.J., Lanfear, R., and Bromham, L. (2010). A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol 27, 1173–1180.

    Article  CAS  PubMed  Google Scholar 

  • Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28, 511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanKuren, N.W., and Long, M. (2018). Gene duplicates resolving sexual conflict rapidly evolved essential gametogenesis functions. Nat Ecol Evol 2, 705–712.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdin, E. (2015). NAD in aging, metabolism, and neurodegeneration. Science 350, 1208–1213.

    Article  CAS  PubMed  Google Scholar 

  • Vinckenbosch, N., Dupanloup, I., and Kaessmann, H. (2006). Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA 103, 3220–3225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T., Zhang, X., Bheda, P., Revollo, J.R., Imai, S., and Wolberger, C. (2006a). Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol 13, 661–662.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Elkins, K., Oh, A., Ho, Y.C., Wu, J., Li, H., Xiao, Y., Kwong, M., Coons, M., Brillantes, B., et al. (2014). Structural basis for resistance to diverse classes of NAMPT inhibitors. PLoS ONE 9, e109366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, W., Zheng, H., Fan, C., Li, J., Shi, J., Cai, Z., Zhang, G., Liu, D., Zhang, J., Vang, S., et al. (2006b). High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18, 1791–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Lu, Y., Zhang, Y., Ning, Z., Li, Y., Zhao, Q., Lu, H., Huang, R., Xia, X., Feng, Q., et al. (2015). The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet 47, 625–631.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, K.M. (2005). The phenogenetic logic of life. Nat Rev Genet 6, 36–45.

    Article  CAS  PubMed  Google Scholar 

  • Weng, J.K., Li, Y., Mo, H., and Chapple, C. (2012). Assembly of an evolutionarily new pathway forα1-pyrone biosynthesis in Arabidopsis. Science 337, 960–964.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., and Sharp, P.A. (2013). Divergent transcription: a driving force for new gene origination? Cell 155, 990–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, S., Wang, Z., Zhang, H., Hu, K., Zhang, Z., Qin, M., Dun, X., Yi, B., Wen, J., Ma, C., et al. (2016). Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. Plant Cell 28, 2060–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, C., Zhang, Y.E., Chen, J.Y., Liu, C.J., Zhou, W.Z., Li, Y., Zhang, M., Zhang, R., Wei, L., and Li, C.Y. (2012). Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLoS Genet 8, e1002942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H.B., Li, Y.X., Li, Y., Otecko, N.O., Zhang, Y.P., Mao, B., and Wu, D. D. (2018). Origin of new genes after zygotic genome activation in vertebrate. J Mol Cell Biol 10, 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Xu, P., Zhang, X., Wang, X., Li, J., Liu, G., Kuang, Y., Xu, J., Zheng, X., Ren, L., Wang, G., et al. (2014). Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46, 1212–1219.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Ma, X., He, Y., Yuan, C., Chen, Q., Li, G., and Chen, X. (2017). Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. Sci China Life Sci 60, 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., and Nielsen, R. (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19, 908–917.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, M., Satoh, A., Lin, J.B., Mills, K.F., Sasaki, Y., Rensing, N., Wong, M., Apte, R.S., and Imai, S.I. (2019). Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab 30, 329–342.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshino, J., Mills, K.F., Yoon, M.J., and Imai, S. (2011). Nicotinamide mononucleotide, a key NAD intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14, 528–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Wang, J., Xie, W., Zhou, G., Long, M., and Zhang, Q. (2011a). Dynamic programming procedure for searching optimal models to estimate substitution rates based on the maximum-likelihood method. Proc Natl Acad Sci USA 108, 7860–7865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Dean, A.M., Brunet, F., and Long, M. (2004). Evolving protein functional diversity in new genes of Drosophila. Proc Natl Acad Sci USA 101, 16246–16250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Long, M., and Li, L. (2005). Translational effects of differential codon usage among intragenic domains of new genes in Drosophila. Biochim Biophys Acta Gene Struct Expr 1728, 135–142.

    Article  CAS  Google Scholar 

  • Zhang, J., Yang, H., Long, M., Li, L., and Dean, A.M. (2010). Evolution of enzymatic activities of testis-specific short-chain dehydrogenase/reductase in Drosophila. J Mol Evol 71, 241–249.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Ren, Y., Yang, T., Li, G., Chen, J., Gschwend, A.R., Yu, Y., Hou, G., Zi, J., Zhou, R., et al. (2019a). Rapid evolution of protein diversity by de novo origination in Oryza. Nat Ecol Evol 3, 679–690.

    Article  PubMed  Google Scholar 

  • Zhang, W., Gao, Y., Long, M., and Shen, B. (2019b). Origination and evolution of orphan genes and de novo genes in the genome of Caenorhabditis elegans. Sci China Life Sci 62, 579–593.

    Article  PubMed  Google Scholar 

  • Zhang, W., Landback, P., Gschwend, A.R., Shen, B., and Long, M. (2015). New genes drive the evolution of gene interaction networks in the human and mouse genomes. Genome Biol 16, 202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y.E., Landback, P., Vibranovski, M.D., and Long, M. (2011b). Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 9, e1001179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Fan, Y., Xiong, J., Guo, X., Hu, K., Wang, Z., Gao, J., Wen, J., Yi, B., Shen, J., et al. (2020). Two young genes reshape a novel interaction network in Brassica napus. New Phytol 225, 530–545.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Saelao, P., Jones, C.D., and Begun, D.J. (2014). Origin and spread of de novo genes in Drosophila melanogaster populations. Science 343, 769–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang, X., Yang, C., Murphy, K.R., and Cheng, C.H.C. (2019). Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc Natl Acad Sci USA 116, 4400–4405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zu, J., Gu, Y., Li, Y., Li, C., Zhang, W., Zhang, Y.E., Lee, U.J., Zhang, L., and Long, M. (2019). Topological evolution of coexpression networks by new gene integration maintains the hierarchical and modular structures in human ancestors. Sci China Life Sci 62, 594–608.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by the Pilot projects (XDB13020100), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000) and the National Natural Science Foundation of China (NSFC, 31601859). We would like to thank Prof. Manyuan Long (The University of Chicago), Prof. Wuhan Xiao (Institute of Hydrobiology, CAS), Prof. Z. Yin (Institute of Hydrobiology, CAS), Prof. Yonghua Sun (Institute of Hydrobiology, CAS), Prof. Shuhong Zhao (Huazhong Agricultural University), and Prof. Changchun Li (Huazhong Agricultural University) for providing experiment platform and technical assistance. We also thank Dr. Liandong Yang and Dr. Zaixuan Zhong (Institute of Hydrobiology, CAS) for providing the transcriptome sequencing data. We also thank Dr. Dylan Sosa and Emily Mortola (The University of Chicago) for refining the style and language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunping He.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Gan, X., Zhang, C. et al. The new chimeric chiron genes evolved essential roles in zebrafish embryonic development by regulating NAD+ levels. Sci. China Life Sci. 64, 1929–1948 (2021). https://doi.org/10.1007/s11427-020-1851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1851-0

Navigation