Skip to main content
Log in

Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Ferritin, an iron-storage protein, regulates cellular iron metabolism and oxidative stress. The ferritin structure is characterized as a spherical cage, inside which large amounts of iron are deposited in a safe, compact and bioavailable form. All ferritins readily catalyze Fe(II) oxidation by peroxides at the ferroxidase center to prevent free Fe(II) from participating in oxygen free radical formation via Fenton chemistry. Thus, ferritin is generally recognized as a cytoprotective stratagem against intracellular oxidative damage The expression of cytosolic ferritins is usually regulated by iron status and oxidative stress at both the transcriptional and post-transcriptional levels. The mechanism of ferritin-mediated iron recycling is far from clarified, though nuclear receptor co-activator 4 (NCOA4) was recently identified as a cargo receptor for ferritin-based lysosomal degradation. Cytosolic ferritins are heteropolymers assembled by H- and L-chains in different proportions. The mitochondrial ferritins are homopolymers and distributed in restricted tissues. They play protective roles in mitochondria where heme- and Fe/S-enzymes are synthesized and high levels of ROS are produced. Genetic ferritin disorders are mainly related to the L-chain mutations, which generally cause severe movement diseases. This review is focused on the biochemistry and function of mammalian intracellular ferritin as the major iron-storage and anti-oxidation protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajzashokouhi, A.H., Bostan, H.B., Jomezadeh, V., Hayes, A.W., and Karimi, G. (2020). A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum Exp Toxicol 39, 237–248.

    CAS  PubMed  Google Scholar 

  • Arosio, P., Carmona, F., Gozzelino, R., Maccarinelli, F., and Poli, M. (2015). The importance of eukaryotic ferritins in iron handling and cytoprotection. Biochem J 472, 1–15.

    CAS  PubMed  Google Scholar 

  • Arosio, P., Elia, L., and Poli, M. (2017). Ferritin, cellular iron storage and regulation. IUBMB Life 69, 414–422.

    CAS  PubMed  Google Scholar 

  • Asensio-Lopez, M.C., Sanchez-Mas, J., Pascual-Figal, D.A., de Torre, C., Valdes, M., and Lax, A. (2014). Ferritin heavy chain as main mediator of preventive effect of metformin against mitochondrial damage induced by doxorubicin in cardiomyocytes. Free Radic Biol Med 67, 19–29.

    CAS  PubMed  Google Scholar 

  • Asensio-López, M.C., Sánchez-Más, J., Pascual-Figal, D.A., Abenza, S., Pérez-Martínez, M.T., Valdés, M., and Lax, A. (2013). Involvement of ferritin heavy chain in the preventive effect of metformin against doxorubicin-induced cardiotoxicity. Free Radic Biol Med 57, 188–200.

    PubMed  Google Scholar 

  • Ayton, S., Faux, N.G., and Bush, A.I. (2017). Association of cerebrospinal fluid ferritin level with preclinical cognitive decline in APOE-ε4 carriers. JAMA Neurol 74, 122–125.

    PubMed  Google Scholar 

  • Bachmeyer, C., and Rein, C. (2015). Glycosylated ferritin as a marker of hemophagocytic syndrome: comment on the article by Mecchella et al. Arthritis Care Res 67, 737.

    CAS  Google Scholar 

  • Badu-Boateng, C., and Naftalin, R.J. (2019). Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic Biol Med 133, 75–87.

    CAS  PubMed  Google Scholar 

  • Bahr, T.M., Christensen, R.D., Ward, D.M., Meng, F., Jackson, L.K., Doyle, K., Christensen, D.R., Harvey, A.G., and Yaish, H.M. (2019). Ferritin in serum and urine: A pilot study. Blood Cells Mol Dis 76, 59–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balashova, E.A., Mazur, L.I., Tezikov, Y.V., and Lipatov, I.S. (2020). The impact of iron deficiency correction in pregnant women on the perinatal period and children’s health status. Ross Vestn Perinatol Pediatr 65, 51–58.

    Google Scholar 

  • Balla, G., Jacob, H.S., Balla, J., Rosenberg, M., Nath, K., Apple, F., Eaton, J.W., and Vercellotti, G.M. (1992). Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267, 18148–18153.

    CAS  PubMed  Google Scholar 

  • Balla J., Balla, G., and Zarjou, A. (2019). Ferritin in kidney and vascular related diseases: novel roles for an old player. Pharmaceuticals 12, 96.

    CAS  PubMed Central  Google Scholar 

  • Bartnikas, T.B., Campagna, D.R., Antiochos, B., Mulhern, H., Pondarré, C., and Fleming, M.D. (2010). Characterization of mitochondrial ferritin-deficient mice. Am J Hematol 85, 958–960.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertoli, S., Paubelle, E., Bérard, E., Saland, E., Thomas, X., Tavitian, S., Larcher, M.V., Vergez, F., Delabesse, E., Sarry, A., et al. (2019). Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur J Haematol 102, 131–142.

    CAS  PubMed  Google Scholar 

  • Bittermann, S., Schild, C., Marti, E., Mirkovitch, J., Schweizer, D., and Henke, D. (2019). Analysis of blood degradation products and ferritin in the cerebrospinal fluid of dogs with acute thoracolumbar intervertebral disk extrusion, a prospective pilot study. BMC Vet Res 15, 148.

    PubMed  PubMed Central  Google Scholar 

  • Bou-Abdallah, F., Paliakkara, J.J., Melman, G., and Melman, A. (2018). Reductive mobilization of iron from intact ferritin: mechanisms and physiological implication. Pharmaceuticals 11, 120.

    CAS  PubMed Central  Google Scholar 

  • Bou-Abdallah, F., Papaefthymiou, G.C., Scheswohl, D.M., Stanga, S.D., Arosio, P., and Chasteen, N.D. (2002). µ-1,2-Peroxobridged di-iron(III) dimer formation in human H-chain ferritin. Biochem J 364, 57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bou-Abdallah, F., Santambrogio, P., Levi, S., Arosio, P., and Chasteen, N. D. (2005a). Unique iron binding and oxidation properties of human mitochondrial ferritin: a comparative analysis with Human H-chain ferritin. J Mol Biol 347, 543–554.

    CAS  PubMed  Google Scholar 

  • Bou-Abdallah, F., Zhao, G., Mayne, H.R., Arosio, P., and Chasteen, N.D. (2005b). Origin of the unusual kinetics of iron deposition in human H-chain ferritin. J Am Chem Soc 127, 3885–3893.

    CAS  PubMed  Google Scholar 

  • Bulvik, B.E., Berenshtein, E., Meyron-Holtz, E.G., Konijn, A.M., and Chevion, M. (2012). Cardiac protection by preconditioning is generated via an iron-signal created by proteasomal degradation of iron proteins. PLoS ONE 7, e48947.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappellini, M.D., Comin-Colet, J., de Francisco, A., Dignass, A., Doehner, W., Lam, C.S., Macdougall, I.C., Rogler, G., Camaschella, C., Kadir, R., et al. (2017). Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am J Hematol 92, 1068–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappellini, M.D., Musallam, K.M., and Taher, A.T. (2020). Iron deficiency anaemia revisited. J Intern Med 287, 153–170.

    CAS  PubMed  Google Scholar 

  • Carrondo, M.A. (2003). Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J 22, 1959–1968.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, R., Chu, K.A., Lin, M.C., Chu, Y.H., Hung, Y.M., and Wei, J.C.C. (2020). Newly diagnosed iron deficiency anemia and subsequent autoimmune disease: a matched cohort study in Taiwan. Curr Med Res Opin 36, 985–992.

    PubMed  Google Scholar 

  • Chen, L., Li, Y., Zhang, F., Zhang, S., Zhou, X., and Ji, L. (2017). Association of serum ferritin levels with metabolic syndrome and insulin resistance in a Chinese population. J Diabetes its Complicat 31, 364–368.

    Google Scholar 

  • Chevion, M., Leibowitz, S., Aye, N.N., Novogrodsky, O., Singer, A., Avizemer, O., Bulvik, B., Konijn, A.M., and Berenshtein, E. (2008). Heart protection by ischemic preconditioning: A novel pathway initiated by iron and mediated by ferritin. J Mol Cell Cardiol 45, 839–845.

    CAS  PubMed  Google Scholar 

  • Chiou, B., and Connor, J.R. (2018). Emerging and dynamic biomedical uses of ferritin. Pharmaceuticals 11, 124.

    CAS  PubMed Central  Google Scholar 

  • Chirillo, R., Aversa, I., Di Vito, A., Salatino, A., Battaglia, A.M., Sacco, A., Di Sanzo, M.A., Faniello, M.C., Quaresima, B., Palmieri, C., et al. (2020). FtH-mediated ROS Dysregulation promotes CXCL12/CXCR4 axis activation and EMT-like trans-differentiation in erythroleukemia K562 cells. Front Oncol 10, 698.

    PubMed  PubMed Central  Google Scholar 

  • Chon, J., Stover, P. J., and Field, M.S. (2017). Targeting nuclear thymidylate biosynthesis. Mol Aspects Med 53, 48–56.

    CAS  PubMed  Google Scholar 

  • Ci, Y.Z., Li, H., You, L.H., Jin, Y., Zhou, R., Gao, G., Hoi, M.P.M., Wang, C., Chang, Y.Z., and Yu, P. (2020). Iron overload induced by IRP2 gene knockout aggravates symptoms of Parkinson’s disease. Neurochem Int 134, 104657.

    CAS  PubMed  Google Scholar 

  • Cocco, E., Porrini, V., Derosas, M., Nardi, V., Biasiotto, G., Maccarinelli, F., and Zanella, I. (2013). Protective effect of mitochondrial ferritin on cytosolic iron dysregulation induced by doxorubicin in HeLa cells. Mol Biol Rep 40, 6757–6764.

    CAS  PubMed  Google Scholar 

  • Conrad, M., and Pratt, D.A. (2019). The chemical basis of ferroptosis. Nat Chem Biol 15, 1137–1147.

    CAS  PubMed  Google Scholar 

  • Cozzi, A., Corsi, B., Levi, S., Santambrogio, P., Albertini, A., and Arosio, P. (2000). Overexpression of wild type and mutated human ferritin H-chain in HeLa cells. J Biol Chem 275, 25122–25129.

    CAS  PubMed  Google Scholar 

  • Cozzi, A., Corsi, B., Levi, S., Santambrogio, P., Biasiotto, G., and Arosio, P. (2004). Analysis of the biologic functions of H- and L-ferritins in HeLa cells by transfection with siRNAs and cDNAs: evidence for a proliferative role of L-ferritin. Blood 103, 2377–2383.

    CAS  PubMed  Google Scholar 

  • Cozzi, A., Rovelli, E., Frizzale, G., Campanella, A., Amendola, M., Arosio, P., and Levi, S. (2010). Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. NeuroBiol Dis 37, 77–85.

    CAS  PubMed  Google Scholar 

  • Cozzi, A., Santambrogio, P., Corsi, B., Campanella, A., Arosio, P., and Levi, S. (2006). Characterization of the L-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder. Neurobiol Dis 23, 644–652.

    CAS  PubMed  Google Scholar 

  • Cremonesi, L., Foglieni, B., Fermo, I., Cozzi, A., Paroni, R., Ruggeri, G., Belloli, S., Levi, S., Fargion, S., Ferrari, M., et al. (2003). Identification of two novel mutations in the 5′-untranslated region of H-ferritin using denaturing high performance liquid chromatography scanning. Haematologica 88, 1110–1116.

    CAS  PubMed  Google Scholar 

  • Cullis, J.O., Fitzsimons, E.J., Griffiths, W.J., Tsochatzis, E., and Thomas, D.W. (2018). Investigation and management of a raised serum ferritin. Br J Haematol 181, 331–340.

    PubMed  Google Scholar 

  • Cutrin, J.C., Alberti, D., Bernacchioni, C., Ciambellotti, S., Turano, P., Luchinat, C., Crich, S.G., and Aime, S. (2018). Cancer cell death induced by ferritins and the peculiar role of their labile iron pool. Oncotarget 9, 27974–27984.

    PubMed  PubMed Central  Google Scholar 

  • Darshan, D., Vanoaica, L., Richman, L., Beermann, F., and Kühn, L.C. (2009). Conditional deletion of ferritin H in mice induces loss of iron storage and liver damage. Hepatology 50, 852–860.

    CAS  PubMed  Google Scholar 

  • Daru, J., Allotey, J., Peña-Rosas, J.P., and Khan, K.S. (2017a). Serum ferritin thresholds for the diagnosis of iron deficiency in pregnancy: a systematic review. Transfus Med 27, 167–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daru, J., Colman, K., Stanworth, S.J., De La Salle, B., Wood, E.M., and Pasricha, S.R. (2017b). Serum ferritin as an indicator of iron status: what do we need to know? Am J Clin Nutr 106, 1634S–1639S.

    PubMed  PubMed Central  Google Scholar 

  • De Domenico, I., Vaughn, M.B., Li, L., Bagley, D., Musci, G., Ward, D.M., and Kaplan, J. (2006). Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J 25, 5396–5404.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Domenico, I., Ward, D.M.V., and Kaplan, J. (2009). Specific iron chelators determine the route of ferritin degradation. Blood 114, 4546–4551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dignass, A., Farrag, K., and Stein, J. (2018). Limitations of serum ferritin in diagnosing iron deficiency in inflammatory conditions. Int J Chronic Dis 2018, 1–11.

    Google Scholar 

  • Diouf, I., Fazlollahi, A., Bush, A.I., and Ayton, S. (2019). Cerebrospinal fluid ferritin levels predict brain hypometabolism in people with underlying β-amyloid pathology. Neurobiol Dis 124, 335–339.

    CAS  PubMed  Google Scholar 

  • Dowdle, W.E., Nyfeler, B., Nagel, J., Elling, R.A., Liu, S., Triantafellow, E., Menon, S., Wang, Z., Honda, A., Pardee, G., et al. (2014). Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 16, 1069–1079.

    CAS  PubMed  Google Scholar 

  • Drysdale, J., Arosio, P., Invernizzi, R., Cazzola, M., Volz, A., Corsi, B., Biasiotto, G., and Levi, S. (2002). Mitochondrial ferritin: a new player in iron metabolism. Blood Cells Mol Dis 29, 376–383.

    CAS  PubMed  Google Scholar 

  • Ducamp, S., and Fleming, M.D. (2019). The molecular genetics of sideroblastic anemia. Blood 133, 59–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erdemli, B., Özbek, E.A.ı., Başarir, K., Karahan, Z.C., Öcal, D., and Biriken, D. (2018). Proinflammatory biomarkers’ level and functional genetic polymorphisms in periprosthetic joint infection. Acta Orthop Traumatol Turc 52, 143–147.

    PubMed  PubMed Central  Google Scholar 

  • Fan, K., Cao, C., Pan, Y., Lu, D., Yang, D., Feng, J., Song, L., Liang, M., and Yan, X. (2012). Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotech 7, 459–464.

    CAS  Google Scholar 

  • Ferreira, C., Bucchini, D., Martin, M.E., Levi, S., Arosio, P., Grandchamp, B., and Beaumont, C. (2000). Early embryonic lethality of H ferritin gene deletion in mice. J Biol Chem 275, 3021–3024.

    CAS  PubMed  Google Scholar 

  • Ferreira, C., Santambrogio, P., Martin, M.E., Andrieu, V., Feldmann, G., Henin, D., and Beaumont, C. (2001). H ferritin knockout mice: A model of hyperferritinemia in the absence of iron overload. Blood 98, 525–532.

    CAS  PubMed  Google Scholar 

  • Ferro, E., Capra, A.P., Zirilli, G., Meduri, A., Urso, M., Briuglia, S., and La Rosa, M.A. (2018). FTL c.-168G>C mutation in hereditary hyperferritinemia cataract syndrome: A new Italian family. Pediatr Dev Pathol 21, 456–460.

    PubMed  Google Scholar 

  • Field, M.S., Kamynina, E., Chon, J., and Stover, P.J. (2018). Nuclear folate metabolism. Annu Rev Nutr 38, 219–243.

    CAS  PubMed  Google Scholar 

  • Finazzi, D., and Arosio, P. (2014). Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch Toxicol 88, 1787–1802.

    CAS  PubMed  Google Scholar 

  • Foy, B.H., Li, A., McClung, J.P., Ranganath, R., and Higgins, J.M. (2020). Data-driven physiologic thresholds for iron deficiency associated with hematologic decline. Am J Hematol 95, 302–309.

    CAS  PubMed  Google Scholar 

  • Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., Alnemri, E.S., Altucci, L., Amelio, I., Andrews, D.W., et al. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25, 486–541.

    PubMed  PubMed Central  Google Scholar 

  • Gao, G., and Chang, Y.Z. (2014). Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front Pharmacol 5, 19.

    PubMed  PubMed Central  Google Scholar 

  • Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., et al. (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotech 2, 577–583.

    CAS  Google Scholar 

  • Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J., and Jiang, X. (2016). Ferroptosis is an autophagic cell death process. Cell Res 26, 1021–1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Casal, M.N., Pasricha, S.R., Martinez, R.X., Lopez-Perez, L., and Peña-Rosas, J.P. (2018). Are current serum and plasma ferritin cut-offs for iron deficiency and overload accurate and reflecting iron status? A systematic review. Arch Med Res 49, 405–417.

    CAS  PubMed  Google Scholar 

  • Giemza-Stokłosa, J., Islam, M.A., and Kotyla, P.J. (2019). Hyperferritinaemia: An iron sword of autoimmunity. Curr Pharm Des 25, 2909–2918.

    PubMed  Google Scholar 

  • Gozzelino, R., Andrade, B.B., Larsen, R., Luz, N.F., Vanoaica, L., Seixas, E., Coutinho, A., Cardoso, S., Rebelo, S., Poli, M., et al. (2012). Metabolic adaptation to tissue iron overload confers tolerance to malaria. Cell Host Microbe 12, 693–704.

    CAS  PubMed  Google Scholar 

  • Harrison, P.M., and Arosio, P. (1996). The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275, 161–203.

    PubMed  Google Scholar 

  • Hatcher, H.C., Tesfay, L., Torti, S.V., and Torti, F.M. (2015). Cytoprotective effect of ferritin H in renal ischemia reperfusion injury. PLoS ONE 10, e0138505.

    PubMed  PubMed Central  Google Scholar 

  • He, J., Fan, K., and Yan, X (2019) Ferritin drug carrier (FDC) for tumor targeting therapy. J Control Release 311–312, 288–300.

    PubMed  Google Scholar 

  • Hintze, K.J., Katoh, Y., Igarashi, K., and Theil, E.C. (2007). Bach1 repression of ferritin and thioredoxin reductase1 is heme-sensitive in cells and in vitro and coordinates expression with heme oxygenase1, beta-globin, and NADP(H) quinone (oxido) reductase1. J Biol Chem 282, 34365–34371.

    CAS  PubMed  Google Scholar 

  • Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh Iii, H.J., Kang, R., and Tang, D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, B.W., Miyazawa, M., and Tsuji, Y. (2014). Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels. Cell Signal 26, 2702–2709.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, J., Krebs, C., Huynh, B.H., Edmondson, D.E., Theil, E.C., and Penner-Hahn, J.E. (2000). A short Fe-Fe distance in peroxodiferric ferritin: control of Fe substrate versus cofactor decay? Science 287, 122–125.

    CAS  PubMed  Google Scholar 

  • Iwasaki, K., Hailemariam, K., and Tsuji, Y. (2007). PIAS3 interacts with ATF1 and regulates the human Ferritin H gene through an antioxidantresponsive element. J Biol Chem 282, 22335–22343.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki, K., MacKenzie, E.L., Hailemariam, K., Sakamoto, K., and Tsuji, Y. (2006). Hemin-mediated regulation of an antioxidant-responsive element of the human ferritin H gene and role of Ref-1 during erythroid differentiation of K562 cells. Mol Cell Biol 26, 2845–2856.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, A., and Worwood, M. (1975). Clinical and biochemical implications. Ferritin in serum. N Engl J Med 292, 951–956.

    CAS  PubMed  Google Scholar 

  • Jiang, H., Song, N., Jiao, Q., Shi, L., and Du, X. (2019). Iron pathophysiology in Parkinson diseases. Adv Exp Med Biol 1173, 45–66.

    CAS  PubMed  Google Scholar 

  • Jin, W., Takagi, H., Pancorbo, B., and Theil, E.C. (2001). “Opening” the ferritin pore for iron release by mutation of conserved amino acids at interhelix and loop sites. Biochemistry 40, 7525–7532.

    CAS  PubMed  Google Scholar 

  • Johnson, J.L., Norcross, D.C., Arosio, P., Frankel, R.B., and Watt, G.D. (1999). Redox reactivity of animal apoferritins and apoheteropolymers assembled from recombinant heavy and light human chain ferritins. Biochemistry 38, 4089–4096.

    CAS  PubMed  Google Scholar 

  • Kajarabille, N., and Latunde-Dada, G.O. (2019). Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci 20, 4968.

    CAS  PubMed Central  Google Scholar 

  • Kato, J., Fujikawa, K., Kanda, M., Fukuda, N., Sasaki, K., Takayama, T., Kobune, M., Takada, K., Takimoto, R., Hamada, H., et al. (2001). A mutation, in the iron-responsive element of H ferritin mRNA, causing autosomal dominant iron overload. Am J Hum Genet 69, 191–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabata, H. (2018). The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int J Hematol 107, 31–43.

    CAS  PubMed  Google Scholar 

  • Kępa, L., Oczko-Grzesik, B., Stolarz, W., and Boroń-Kaczmarska, A. (2016). Cerebrospinal fluid ferritin concentration in patients with purulent, bacterial meningitis-own observations. Przegl Epidemiol 70, 593–603.

    PubMed  Google Scholar 

  • Koochana, P.K., Mohanty, A., Das, S., Subhadarshanee, B., Satpati, S., Dixit, A., Sabat, S.C., and Behera, R.K. (2018). Releasing iron from ferritin protein nanocage by reductive method: The role of electron transfer mediator. Biochim Biophys Acta 1862, 1190–1198.

    CAS  Google Scholar 

  • Kuwata, T., Okada, Y., Yamamoto, T., Sato, D., Fujiwara, K., Fukumura, T., and Ikeguchi, M (2019) Structure, function, folding, and aggregation of a neuroferritinopathy-related ferritin variant. Biochemistry 58, 2318–2325.

    CAS  PubMed  Google Scholar 

  • Lane, D.J.R., Ayton, S., and Bush, A.I. (2018). Iron and Alzheimer’s disease: an update on emerging mechanisms. J Alzheimers Dis 64, S379–S395.

    CAS  PubMed  Google Scholar 

  • Laufberger, V. (1937). Sur la Cristallisation de la ferritine. Bull Soc Chim Biol 19, 1575–1582.

    CAS  Google Scholar 

  • Levi, S., Corsi, B., Bosisio, M., Invernizzi, R., Volz, A., Sanford, D., Arosio, P., and Drysdale, J. (2001). A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276, 24437–24440.

    CAS  PubMed  Google Scholar 

  • Levi, S., and Arosio, P. (2004). Mitochondrial ferritin. Int J Biochem Cell Biol 36, 1887–1889.

    CAS  PubMed  Google Scholar 

  • Levi, S., Cozzi, A., and Arosio, P. (2005). Neuroferritinopathy: a neurodegenerative disorder associated with L-ferritin mutation. Best Pract Res Clin Haematol 18, 265–276.

    CAS  PubMed  Google Scholar 

  • Levi, S., and Finazzi, D. (2014). Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol 5, 99.

    PubMed  PubMed Central  Google Scholar 

  • Levi, S., Santambrogio, P., Corsi, B., Cozzi, A., and Arosio, P. (1996). Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation. Biochem J 317, 467–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levi, S., and Tiranti, V. (2019). Neurodegeneration with brain iron accumulation disorders: valuable models aimed at understanding the pathogenesis of iron deposition. Pharmaceuticals 12, 27.

    CAS  PubMed Central  Google Scholar 

  • Lill, R., and Mühlenhoff, U. (2008). Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77, 669–700.

    CAS  PubMed  Google Scholar 

  • Lin, S., and Wei, H. (2019). Design of high performance nanozymes: a single-atom strategy. Sci China Life Sci 62, 710–712.

    PubMed  Google Scholar 

  • Liu, J.L., Fan, Y.G., Yang, Z.S., Wang, Z.Y., and Guo, C. (2018). Iron and Alzheimer’s disease: from pathogenesis to therapeutic implications. Front Neurosci 12, 632.

    PubMed  PubMed Central  Google Scholar 

  • Liu, J., Gao, L., Zhan, N., Xu, P., Yang, J., Yuan, F., Xu, Y., Cai, Q., Geng, R., and Chen, Q. (2020a). Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma. J Exp Clin Cancer Res 39, 137.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Kuang, F., Kroemer, G., Klionsky, D.J., Kang, R., and Tang, D. (2020b). Autophagy-dependent ferroptosis: Machinery and regulation. Cell Chem Biol 27, 420–435.

    PubMed  PubMed Central  Google Scholar 

  • Liu, Z., and Qu, X. (2019). New insights into nanomaterials combating bacteria: ROS and beyond. Sci China Life Sci 62, 150–152.

    PubMed  Google Scholar 

  • Llorens, J.V., Soriano, S., Calap-Quintana, P., Gonzalez-Cabo, P., and Moltó, M.D. (2019). The role of Iron in Friedreich’s ataxia: insights from studies in human tissues and cellular and animal models. Front Neurosci 13, 75.

    PubMed  PubMed Central  Google Scholar 

  • Luo, Q., Qin, X., Qiu, Y., Hou, L., and Yang, N. (2018). The change of synovial fluid proteome in rabbit surgery-induced model of knee osteoarthritis. Am J Transl Res 10, 2087–2101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, H., and Shang, P. (2018). The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics 10, 899–916.

    CAS  PubMed  Google Scholar 

  • Maccarinelli, F., Gammella, E., Asperti, M., Regoni, M., Biasiotto, G., Turco, E., Altruda, F., Lonardi, S., Cornaghi, L., Donetti, E., et al. (2014). Mice lacking mitochondrial ferritin are more sensitive to doxorubicin-mediated cardiotoxicity. J Mol Med 92, 859–869.

    CAS  PubMed  Google Scholar 

  • Maccarinelli, F., Regoni, M., Carmona, F., Poli, M., Meyron-Holtz, E.G., and Arosio, P. (2017). Mitochondrial ferritin deficiency reduces male fertility in mice. Reprod Fertil Dev 29, 2005.

    CAS  PubMed  Google Scholar 

  • MacKenzie, E.L., Ray, P.D., and Tsuji, Y. (2008). Role and regulation of ferritin H in rotenone-mediated mitochondrial oxidative stress. Free Radic Biol Med 44, 1762–1771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makeyev, A.V., and Liebhaber, S.A. (2002). The poly(C)-binding proteins: A multiplicity of functions and a search for mechanisms. RNA 8, 265–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mancias, J.D., Pontano Vaites, L., Nissim, S., Biancur, D.E., Kim, A.J., Wang, X., Liu, Y., Goessling, W., Kimmelman, A.C., and Harper, J.W. (2015). Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife 4, e10308.

    PubMed Central  Google Scholar 

  • Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W., and Kimmelman, A.C. (2014). Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mangaonkar, A.A., and Patnaik, M.M. (2020). Treatment of acquired sideroblastic anemias. Hematol/Oncol Clin North Am 34, 401–420.

    Google Scholar 

  • Mattiello, V., Schmugge, M., Hengartner, H., von der Weid, N., and Renella, R. (2020). Diagnosis and management of iron deficiency in children with or without anemia: consensus recommendations of the SPOG Pediatric Hematology Working Group. Eur J Pediatr 179, 527–545.

    PubMed  Google Scholar 

  • Mattila, R.M., Sainio, A., Järveläinen, M., Pursiheimo, J., and Järveläinen, H. (2018). A novel double nucleotide variant in the ferritin-L iron-responsive element in a Finnish patient with hereditary hyperferritinaemia-cataract syndrome. Acta Ophthalmol 96, 95–99.

    CAS  PubMed  Google Scholar 

  • McNally, J.R., Mehlenbacher, M.R., Luscieti, S., Smith, G.L., Reutovich, A.A., Maura, P., Arosio, P., and Bou-Abdallah, F. (2019). Mutant L-chain ferritins that cause neuroferritinopathy alter ferritin functionality and iron permeability. Metallomics 11, 1635–1647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, X., Fan, K., and Yan, X. (2019). Nanozymes: an emerging field bridging nanotechnology and enzymology. Sci China Life Sci 62, 1543–1546.

    PubMed  Google Scholar 

  • Mieszkowski, J., Kochanowicz, M., Żychowska, M., Kochanowicz, A., Grzybkowska, A., Anczykowska, K., Sawicki, P., Borkowska, A., Niespodzinski, B., and Antosiewicz, J. (2019). Ferritin genes overexpression in PBMC and a rise in exercise performance as an adaptive response to ischaemic preconditioning in young men. Biomed Res Int 2019, 1–9.

    Google Scholar 

  • Mochizuki, H., Choong, C.J., and Baba, K. (2020). Parkinson’s disease and iron. J Neural Transm 127, 181–187.

    PubMed  Google Scholar 

  • Muhoberac, B.B., and Vidal, R. (2019). Iron, ferritin, hereditary ferritinopathy, and neurodegeneration. Front Neurosci 13, 1–20.

    Google Scholar 

  • Nabhan, D., Bielko, S., Sinex, J.A., Surhoff, K., Moreau, W.J., Schumacher, Y.O., Bahr, R., and Chapman, R.F. (2019). Serum ferritin distribution in elite athletes. J Sci Med Sport 23, 554–558.

    PubMed  Google Scholar 

  • Nakagawa, C., Inaba, M., Ishimura, E., Yamakawa, T., Shoji, S., and Okuno, S. (2016). Association of increased serum ferritin with impaired muscle strength/quality in hemodialysis patients. J Renal Nutr 26, 253–257.

    CAS  Google Scholar 

  • Ndayisaba, A., Kaindlstorfer, C., and Wenning, G.K. (2019). Iron in neurodegeneration—Cause or consequence? Front Neurosci 13, 180.

    PubMed  PubMed Central  Google Scholar 

  • Nugzar, O., Zandman-Goddard, G., Oz, H., Lakstein, D., Feldbrin, Z., and Shargorodsky, M. (2018). The role of ferritin and adiponectin as predictors of cartilage damage assessed by arthroscopy in patients with symptomatic knee osteoarthritis. Best Pract Res Clin Rheumatol 32, 662–668.

    PubMed  Google Scholar 

  • Obolensky, A., Berenshtein, E., Konijn, A.M., Banin, E., and Chevion, M. (2008). Ischemic preconditioning of the rat retina: Protective role of ferritin. Free Radic Biol Med 44, 1286–1294.

    CAS  PubMed  Google Scholar 

  • Parkin, P.C., Koroshegyi, C., Mamak, E., Borkhoff, C.M., Birken, C.S., Maguire, J.L., Thorpe, K.E., Aglipay, M., Anderson, L.N., Keown-Stoneman, C., et al. (2020). Association between serum ferritin and cognitive function in early childhood. J Pediatr 217, 189–191.e2.

    PubMed  Google Scholar 

  • Pulos-Holmes, M.C., Srole, D.N., Juarez, M.G., Lee, A.S.Y., McSwiggen, D.T., Ingolia, N.T., and Cate, J.H. (2019). Repression of ferritin light chain translation by human eIF3. eLife 8, e48193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Putburee, R., Jetsrisuparb, A., Fucharoen, S., and Tripatara, A. (2018). Mitochondrial ferritin expression in erythroid cells from patients with alpha-thalassaemia. Hematology 23, 844–848.

    CAS  PubMed  Google Scholar 

  • Qin, Z., Zhang, Y., Mu, H., Zhang, Z., and Qiu, J.W. (2018). The sperm proteome of the echiuran Urechis unicinctus (Annelida, Echiura). Proteomics 18, 1800107.

    Google Scholar 

  • Quiles Del Rey, M., and Mancias, J.D. (2019). NCOA4-mediated Ferritinophagy: a potential link to neurodegeneration. Front Neurosci 13, 238.

    PubMed  PubMed Central  Google Scholar 

  • Raghunath, A., Sundarraj, K., Nagarajan, R., Arfuso, F., Bian, J., Kumar, A.P., Sethi, G., and Perumal, E. (2018). Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol 17, 297–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos, S., Carlos, A.R., Sundaram, B., Jeney, V., Ribeiro, A., Gozzelino, R., Bank, C., Gjini, E., Braza, F., Martins, R., et al. (2019). Renal control of disease tolerance to malaria. Proc Natl Acad Sci USA 116, 5681–5686.

    CAS  PubMed  Google Scholar 

  • Rezk Farhan, F., AL-Refaie, F.N., and Sankaralingham, S. (2018). Hereditary hyperferritinaemia-cataract syndrome classical presentation for differential diagnosis. Int J Hematol Blo Dis 3, 1–3.

    Google Scholar 

  • Rouillon, J., Lefebvre, T., Denard, J., Puy, V., Daher, R., Ausseil, J., Zocevic, A., Fogel, P., Peoc’h, K., Wong, B., et al. (2018). High urinary ferritin reflects myoglobin iron evacuation in DMD patients. Neuromuscul Disord 28, 564–571.

    PubMed  Google Scholar 

  • Santambrogio, P., Biasiotto, G., Sanvito, F., Olivieri, S., Arosio, P., and Levi, S (2007) Mitochondrial ferritin expression in adult mouse tissues. J Histochem Cytochem 55, 1129–1137.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santambrogio, P., Levi, S., Arosio, P., Palagi, L., Vecchio, G., Lawson, D. M., Yewdall, S.J., Artymiuk, P.J., Harrison, P.M., and Jappelli, R. (1992). Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins. J Biol Chem 267, 14077–14083.

    CAS  PubMed  Google Scholar 

  • Santambrogio, P., Levi, S., Cozzi, A., Rovida, E., Albertini, A., and Arosio, P. (1993). Production and characterization of recombinant heteropolymers of human ferritin H-chain and L-chain. J Biol Chem 268, 12744–12748.

    CAS  PubMed  Google Scholar 

  • Santana-Codina, N., and Mancias, J.D. (2018). The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals 11, 114.

    CAS  PubMed Central  Google Scholar 

  • Shi, Z.H., Shi, F.F., Wang, Y.Q., Sheftel, A.D., Nie, G., Zhao, Y.S., You, L. H., Gou, Y.J., Duan, X.L., Zhao, B.L., et al. (2015) Mitochondrial ferritin, a new target for inhibiting neuronal tumor cell proliferation. Cell Mol Life Sci 72, 983–997.

    CAS  PubMed  Google Scholar 

  • Singh, Y.P., Pandey, A., Vishwakarma, S., and Modi, G. (2019). A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases. Mol Divers 23, 509–526.

    CAS  PubMed  Google Scholar 

  • Soares, M.P., Teixeira, L., and Moita, L.F. (2017). Disease tolerance and immunity in host protection against infection. Nat Rev Immunol 17, 83–96.

    CAS  PubMed  Google Scholar 

  • Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., Fulda, S., Gascón, S., Hatzios, S.K., Kagan, V.E., et al. (2017). Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sui, S., Zhang, J., Xu, S., Wang, Q., Wang, P., and Pang, D. (2019). Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis 10, 331.

    PubMed  PubMed Central  Google Scholar 

  • Tang, D., and Kang, R. (2019). Regulation and Function of autophagy during ferroptosis. In: Tang, D., ed. Ferroptosis in Health and Disease. Heidelberg: Springer. 43–59.

    Google Scholar 

  • Tang, M., Chen, Z., Wu, D., and Chen, L. (2018). Ferritinophagy/ ferroptosis: Iron-related newcomers in human diseases. J Cell Physiol 233, 9179–9190.

    CAS  PubMed  Google Scholar 

  • Tehranchi, R., Fadeel, B., Forsblom, A.M., Christensson, B., Samuelsson, J., Zhivotovsky, B., and Hellstrom-Lindberg, E. (2003). Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 101, 1080–1086.

    CAS  PubMed  Google Scholar 

  • Tello, C., Darling, A., Lupo, V., Pérez-Dueñas, B., and Espinós, C. (2018). On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin Genet 93, 731–740.

    CAS  PubMed  Google Scholar 

  • Theil, E.C., Matzapetakis, M., and Liu, X. (2006). Ferritins: iron/oxygen biominerals in protein nanocages. J Biol Inorg Chem 11, 803–810.

    CAS  PubMed  Google Scholar 

  • Thompson, K., Menzies, S., Muckenthaler, M., Torti, F.M., Wood, T., Torti, S.V., Hentze, M.W., Beard, J., and Connor, J. (2003). Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J Neurosci Res 71, 46–63.

    CAS  PubMed  Google Scholar 

  • Tosha, T., Ng, H.L., Bhattasali, O., Alber, T., and Theil, E.C. (2010). Moving metal ions through ferritin-protein nanocages from three-fold pores to catalytic sites. J Am Chem Soc 132, 14562–14569.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toyokuni, S., and Yanatori, I. (2019). Iron metabolism and ferroptosis. In: Tang, D., ed. Ferroptosis in Health and Disease. Heidelberg: Springer. 27–41.

    Google Scholar 

  • Troha, K., and Ayres, J.S. (2020). Metabolic adaptations to infections at the organismal level. Trends Immunol 41, 113–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valkova, K. (2018). Heme drives adaptive hypoinflammation in endothelial cells. Dissertation for Doctoral Degree. Zürich: University of Zurich.

    Google Scholar 

  • van Schaftingen, E., and Gerin, I. (2002). The glucose-6-phosphatase system. Biochem J 362, 513–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos, A.R., Dos Santos, N.B., Scavone, C., and Munhoz, C.D. (2019). Nrf2/ARE pathway modulation by dietary energy regulation in neurological disorders. Front Pharmacol 10, 33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal, R., Miravalle, L., Gao, X., Barbeito, A.G., Baraibar, M.A., Hekmatyar, S.K., Widel, M., Bansal, N., Delisle, M.B., and Ghetti, B. (2008). Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice. J Neurosci 28, 60–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vigani, G., Solti, Ï.D.M., Thomine, S.B., and Philippar, K. (2019). Essential and detrimental—An update on intracellular iron trafficking and homeostasis. Plant Cell Physiol 60, 1420–1439.

    CAS  PubMed  Google Scholar 

  • Volkmann, M., Richter, R., Herrmann, T., Hentze, S., Hör, M., Hasche, H., Selle, B., Stremmel, W., and Gehrke, S.G. (2019). Hereditary hyperferritinaemia-cataract syndrome (HHCS)—An underestimated condition: ferritin light chain variant spectrum in German families. Clin Chem Lab Med 57, 1837–1845.

    CAS  PubMed  Google Scholar 

  • Wagstaff, M., Worwood, M., and Jacobs, A. (1978). Properties of human tissue isoferritins. Biochem J 173, 969–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Liu, C., Zhao, Y., and Gao, G. (2020). Mitochondria regulation in ferroptosis. Eur J Cell Biol 99, 151058.

    CAS  PubMed  Google Scholar 

  • Wang, Y.Q., Chang, S.Y., Wu, Q., Gou, Y.J., Jia, L., Cui, Y.M., Yu, P., Shi, Z H., Wu, W.S., Gao, G., et al. (2016) The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Front Aging Neurosci 8, 308.

    PubMed  PubMed Central  Google Scholar 

  • Weis, S., Carlos, A.R., Moita, M.R., Singh, S., Blankenhaus, B., Cardoso, S., Larsen, R., Rebelo, S., Schäuble, S., Del Barrio, L., et al. (2017). Metabolic adaptation establishes disease tolerance to sepsis. Cell 169, 1263–1275.e14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Q., Wu, W.S., Su, L., Zheng, X., Wu, W.Y., Santambrogio, P., Gou, Y. J., Hao, Q., Wang, P.N., Li, Y.R., et al. (2019). Mitochondrial ferritin is a hypoxia-inducible factor 1α-inducible gene that protects from hypoxia-induced cell death in brain. Antioxid Redox Signal 30, 198–212.

    CAS  PubMed  Google Scholar 

  • Wu, W., Chang, S., Wu, Q., Xu, Z., Wang, P., Li, Y., Yu, P., Gao, G., Shi, Z., Duan, X., et al. (2016) Mitochondrial ferritin protects the murine myocardium from acute exhaustive exercise injury. Cell Death Dis 7, e2475.

    PubMed  PubMed Central  Google Scholar 

  • Xu, T., Ding, W., Ji, X., Ao, X., Liu, Y., Yu, W., and Wang, J. (2019). Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med 23, 4900–4912.

    PubMed  PubMed Central  Google Scholar 

  • You, L.H., Li, Z., Duan, X.L., Zhao, B.L., Chang, Y.Z., and Shi, Z.H. (2016). Mitochondrial ferritin suppresses MPTP-induced cell damage by regulating iron metabolism and attenuating oxidative stress. Brain Res 1642, 33–42.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Mikhael, M., Xu, D., Li, Y., Soe-Lin, S., Ning, B., Li, W., Nie, G., Zhao, Y., and Ponka, P. (2010) Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxid Redox Signal 13, 999–1009.

    CAS  PubMed  Google Scholar 

  • Zhao, G., Bou-Abdallah, F., Arosio, P., Levi, S., Janus-Chandler, C., and Chasteen, N.D. (2003). Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide. Biochemistry 42, 3142–3150.

    CAS  PubMed  Google Scholar 

  • Zumbrennen, K.B., Wallander, M.L., Romney, S.J., and Leibold, E.A. (2009). Cysteine oxidation regulates the RNA-binding activity of iron regulatory protein 2. Mol Cell Biol 29, 2219–2229.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Sanming Project of Medicine in Shenzhen (SZSM201612031), the National Natural Science Foundation of China (81722024, 81772736, 81571728), Chinese Academy of Sciences (YJKYYQ20180048), the Basic Research Foundation for Shenzhen’s Science and Technology (20190726095103499), the National Key Research and Development Program of China (2017YFA0205501, 2017YFA0205503), and the Youth Innovation Promotion Association (2014078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ni Xie, Guohui Nie, Xiyun Yan or Minmin Liang.

Additional information

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, X., Hong, J. et al. Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Sci. China Life Sci. 64, 352–362 (2021). https://doi.org/10.1007/s11427-020-1795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1795-4

Navigation