Skip to main content
Log in

Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Land plants co-speciate with a diversity of continually expanding plant specialized metabolites (PSMs) and root microbial communities (microbiota). Homeostatic interactions between plants and root microbiota are essential for plant survival in natural environments. A growing appreciation of microbiota for plant health is fuelling rapid advances in genetic mechanisms of controlling microbiota by host plants. PSMs have long been proposed to mediate plant and single microbe interactions. However, the effects of PSMs, especially those evolutionarily new PSMs, on root microbiota at community level remain to be elucidated. Here, we discovered sesterterpenes in Arabidopsis thaliana, produced by recently duplicated prenyltransferase-terpene synthase (PT-TPS) gene clusters, with neo-functionalization. A single-residue substitution played a critical role in the acquisition of sesterterpene synthase (sesterTPS) activity in Brassicaceae plants. Moreover, we found that the absence of two root-specific sesterterpenoids, with similar chemical structure, significantly affected root microbiota assembly in similar patterns. Our results not only demonstrate the sensitivity of plant microbiota to PSMs but also establish a complete framework of host plants to control root microbiota composition through evolutionarily dynamic PSMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aubourg, S., Lecharny, A., and Bohlmann, J. (2002). Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genets Genom 267, 730–745.

    Article  CAS  Google Scholar 

  • Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Statist Soc-Ser B 57, 289–300.

    Google Scholar 

  • Berendsen, R.L., Pieterse, C.M.J., and Bakker, P.A.H.M. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci 17, 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., et al. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G. L., and Knight, R. (2010a). PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267.

    Article  CAS  PubMed  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. (2010b). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castrillo, G., Teixeira, P.J.P.L., Paredes, S.H., Law, T.F., de Lorenzo, L., Feltcher, M.E., Finkel, O.M., Breakfield, N.W., Mieczkowski, P., Jones, C.D., et al. (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F., Tholl, D., Bohlmann, J., and Pichersky, E. (2011). The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66, 212–229.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., and Boutros, P.C. (2011). VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf 12, 35.

    Article  Google Scholar 

  • Chen, Q., Fan, D., and Wang, G. (2015). Heteromeric geranyl (geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis flowers. Mol Plant 8, 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  • Christianson, D.W. (2017). Structural and chemical biology of terpenoid cyclases. Chem Rev 117, 11570–11648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72, 5069–5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10, 996–998.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, K.R., Schluter, J., Coyte, K.Z., and Rakoff-Nahoum, S. (2017). The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan, X., Hay, A., Kwantes, M., Haberer, G., Hallab, A., Ioio, R.D., Hofhuis, H., Pieper, B., Cartolano, M., Neumann, U., et al. (2016). The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nat Plants 2, 16167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, T. (2007). From waste products to ecochemicals: Fifty years research of plant secondary metabolism. Phytochemistry 68, 2831–2846.

    Article  CAS  PubMed  Google Scholar 

  • Huang, A.C., Kautsar, S.A., Hong, Y.J., Medema, M.H., Bond, A.D., Tantillo, D.J., and Osbourn, A. (2017). Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci USA 114, E6005–E6014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampranis, S.C., Ioannidis, D., Purvis, A., Mahrez, W., Ninga, E., Katerelos, N.A., Anssour, S., Dunwell, J.M., Degenhardt, J., Makris, A. M., et al. (2007). Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: Structural insights into the evolution of terpene synthase function. Plant Cell 19, 1994–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, K., Misawa, K., and Kuma, K.I. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30, 3059–3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein, D.J., and Osbourn, A. (2012). Making new molecules—Evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol 15, 415–423.

    Article  CAS  PubMed  Google Scholar 

  • Leach, J.E., Triplett, L.R., Argueso, C.T., and Trivedi, P. (2017). Communication in the phytobiome. Cell 169, 587–596.

    Article  CAS  PubMed  Google Scholar 

  • Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C.D., Tringe, S. G., et al. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Zhang, F., Chang, Y., Zhao, T., Schranz, M.E., and Wang, G. (2015). Nicotinate O-glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana. Plant Cell 21, 1907–1924.

    Article  CAS  Google Scholar 

  • Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Del Rio, T.G., et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller, D.B., Vogel, C., Bai, Y., and Vorholt, J.A. (2016). The plant microbiota: Systems-level insights and perspectives. Annu Rev Genet 50, 211–234.

    Article  CAS  PubMed  Google Scholar 

  • Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K., and Kosakovsky Pond, S.L. (2012). Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8, e1002764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

    Article  CAS  PubMed  Google Scholar 

  • Schlaeppi, K., Dombrowski, N., Oter, R.G., Ver Loren van Themaat, E., and Schulze-Lefert, P. (2014). Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA 111, 585–592.

    Article  CAS  PubMed  Google Scholar 

  • Shao, J., Chen, Q.W., Lv, H.J., He, J., Liu, Z.F., Lu, Y.N., Liu, H.L., Wang, G.D., and Wang, Y. (2011). (+)-Thalianatriene and (-)-retigeranin B catalyzed by sesterterpene synthases from Arabidopsis thaliana. Org Lett 19, 1816–1819.

    Article  CAS  Google Scholar 

  • Srividya, N., Davis, E.M., Croteau, R.B., and Markus Lange, B. (2015). Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase. Proc Natl Acad Sci USA 112, 3332–3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starks, C.M., Back, K., and Chappell, J. (1997). Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815–1820.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis Version 6.0. Mol Biol Evol 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tholl, D., and Lee, S. (2011). Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book 9, e0143.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dam, N.M., and Bouwmeester, H.J. (2016). Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends Plant Sci 21, 256–265.

    Article  CAS  PubMed  Google Scholar 

  • Verbon, E.H., and Liberman, L.M. (2016). Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21, 218–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers, C.E., Bongers, M., Liu, Q., Delatte, T., and Bouwmeester, H. (2014). Metabolic engineering of volatile isoprenoids in plants and microbes. Plant Cell Environ 37, 1753–1775.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Chen, Q., Fan, D., Li, J., Wang, G., and Zhang, P. (2016). Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants. Mol Plant 9, 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G., Tian, L., Aziz, N., Broun, P., Dai, X., He, J., King, A., Zhao, P. X., and Dixon, R.A. (2008). Terpene biosynthesis in glandular trichomes of hop. Plant Physiol 148, 1254–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ MicroBiol 73, 5261–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H., Zhang, F., Liu, B., Huhman, D.V., Sumner, L.W., Dixon, R.A., and Wang, G. (2013). Characterization of the formation of branched short-chain fatty acid: CoAs for bitter acid biosynthesis in hop glandular trichomes. Mol Plant 6, 1301–1317.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Zhang, N., Liu, Y.X., Zhang, X., Hu, B., Qin, Y., Xu, H., Wang, H., Guo, X., Qian, J., et al. (2018). Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci 61, 613–621.

    Article  PubMed  Google Scholar 

  • Zhao, T., Holmer, R., de Bruijn, S., Angenent, G.C., van den Burg, H.A., and Schranz, M.E. (2011). Phylogenomic synteny network analysis of MADS-box transcription factor genes reveals lineage-specific transpositions, ancient tandem duplications, and deep positional conservation. Plant Cell 29, 1278–1292.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2019-2 and QYZDB-SSW-SMC021), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA08000000 and XDB11020700), the National Program on Key Basic Research Projects (2013CB127000), and the State Key Laboratory of Plant Genomics of China (2016A0219-11 and SKLPG2013A0125-5). We thank Dr. Jay D Keasling (University of California, Berkeley) for providing the pMBIS plasmid.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Bai or Guodong Wang.

Additional information

Supporting Information

Figure S1 Functional characterization of 16 plant sesterTPSs in E.coli system.

Figure S2 Terpene synthase assays of TPS18 and TPS18G328W analyzed by GC-MS.

Figure S3 Terpene synthase assays of TPS19 and TPS19G325W analyzed by GC-MS.

Figure S4 Terpene synthase assays of TPS25 and TPS25G328W analyzed by GC-MS.

Figure S5 Terpene synthase assays of TPS30 and TPS30P328W analyzed by GC-MS.

Figure S6 Characterization of TPS25 T-DNA insertion mutants.

Figure S7 Characterization of TPS30 T-DNA insertion mutant (tps30-1|CS805958).

Figure S8tps30-2 and tps30/tps25-1 double mutants generated via CRISPR/Cas9.

Figure S9tps30-3 and tps30/tps25-2 double mutants generated via CRISPR/Cas9.

Figure S10 Sesterterpene profiling in various tissues of Arabidopsis and different transgenic plants by GC-QQQ-MS.

Figure S11 Phenotypes of sesterTPS mutants and Col-0 when grown in natural soil (Changping farm in Beijing) under climate control conditions.

Figure S12 Sample diversity (α/β-diversity) measurements among each genotype.

Figure S13 Stack plot showing relative abundance distribution of the OTUs in phylum.

Figure S14 Taxonomic difference and overlap of specific differential OTUs between TPS mutants and Col-0.

Table S1 The MRM settings for four sesterterpene (C25) backbones analyzed by GC-QQQ-MS in this study

Table S2 The primers used in this study

The supporting information is available online at http://life.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Jiang, T., Liu, YX. et al. Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci. China Life Sci. 62, 947–958 (2019). https://doi.org/10.1007/s11427-019-9521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9521-2

En

Navigation