Skip to main content
Log in

The bacterial RNA ligase RtcB accelerates the repair process of fragmented rRNA upon releasing the antibiotic stress

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

RtcB, a highly conserved RNA ligase, is found in all three domains of life, and demonstrated to be an essential tRNA splicing component in archaea and metazoans. However, the biological functions of RtcB in bacteria, where there is no splicing, remains to be clarified. We first performed bioinformatics analysis which revealed highly conserved structures and presumably conserved functions of RtcB in bacteria. However, its orthologs only occur in ∼ 0.5% of bacterial species across diverse phyla with significant signals of frequent horizontal transfer, highlighting its non-essential role in bacteria. Next, by constructing an rtcB-knockout strain, we find that the removal of antibiotic stress induces a significant impact on rtcB expression in wild-type strain, and furthermore the depletion of RtcB (ARtcB strain) delays the recovery process. Our transcriptomic analysis, comprising the 3′-end labeling of RNAs, highlights a significant increase in unmapped reads and cleaved rRNAs in the Δ RtcB strain, particularly during recovery. Our observations suggest that the conserved RNA ligase RtcB, repairs damaged rRNAs following stress, which potentially saves energy and accelerates recovery of its host. We propose that acquisition of RtcB by diverse bacterial taxa provides a competitive advantage under stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Big Data Center Members, B (2017). The BIG Data Center: from deposition to integration to translation. Nucl Acids Res 45, D18–D24.

    Google Scholar 

  • Burroughs, A.M., and Aravind, L. (2016). RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucl Acids Res 44, 8525–8555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty, A.K., and Shuman, S. (2012). The sequential 2′,3′-cyclic phosphodiesterase and 3′-phosphate/5′-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent. Nucl Acids Res 40, 8558–8567.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty, A.K., Subbotin, R., Chait, B.T., and Shuman, S. (2012). RNA ligase RtcB splices 3′-phosphate and 5′-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3′)pp(5′)G intermediates. Proc Natl Acad Sci USA 109, 6072–6077.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W.H., Lu, G., Chen, X., Zhao, X.M., and Bork, P. (2017). OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucl Acids Res 45, D940–D944.

    CAS  PubMed  Google Scholar 

  • Das, U., Chakravarty, A.K., Remus, B.S., and Shuman, S. (2013). Rewriting the rules for end joining via enzymatic splicing of DNA 3′-PO4 and 5′-OH ends. Proc Natl Acad Sci USA 110, 20437–20442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das, U., Chauleau, M., Ordonez, H., and Shuman, S. (2014). Impact of DNA3′pp5′G capping on repair reactions at DNA 3′ ends. Proc Natl Acad Sci USA 111, 11317–11322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, K.K., Bingman, C.A., Phillips Jr., G.N., and Raines, R.T. (2013). Structures of the noncanonical RNA ligase RtcB reveal the mechanism of histidine guanylylation. Biochemistry 52, 2518–2525.

    CAS  PubMed  Google Scholar 

  • Desai, K.K., Bingman, C.A., Cheng, C.L., Phillips Jr. G.N., and Raines, R. T. (2014a). Structure of RNA 3′-phosphate cyclase bound to substrate RNA. RNA 20, 1560–1566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, K.K., Cheng, C.L., Bingman, C.A., Phillips Jr, G.N., and Raines, R. T. (2014b). A tRNA splicing operon: archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation. Nucl Acids Res 42, 3931–3942.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, K.K., Beltrame, A.L., and Raines, R.T. (2015). Coevolution of RtcB and archease created a multiple-turnover RNA ligase. RNA 21, 1866–1872.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engl, C., Schaefer, J., Kotta-Loizou, I., and Buck, M. (2016). Cellular and molecular phenotypes depending upon the RNA repair system RtcAB of Escherichia coli. Nucl Acids Res 5, gkw628.

    Google Scholar 

  • Englert, M., Sheppard, K., Aslanian, A., Yates, J.R., and Söll, D. (2011). Archaeal 3′-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation. Proc Natl Acad Sci USA 108, 1290–1295.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Englert, M., Xia, S., Okada, C., Nakamura, A., Tanavde, V., Yao, M., Eom, S.H., Konigsberg, W.H., Söll, D., and Wang, J. (2012). Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3′-terminal phosphate and 5′-OH. Proc Natl Acad Sci USA 109, 15235–15240.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C.C., Meng, E.C., Morris, J.H., Pettersen, E.F., and Ferrin, T.E. (2014). Enhancing UCSF chimera through web services. Nucl Acids Res 42, W478–W484.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juhas, M., and Ajioka, J.W. (2016). Lambda red recombinase-mediated integration of the high molecular weight DNA into the Escherichia coli chromosome. Microb Cell Fact 15, 172.

    PubMed  PubMed Central  Google Scholar 

  • Jurkin, J., Henkel, T., Nielsen, A.F., Minnich, M., Popow, J., Kaufmann, T., Heindl, K., Hoffmann, T., Busslinger, M., and Martinez, J. (2014). The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J 33, 2922–2936.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczanowska, M., and Rydén-Aulin, M. (2007). Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 71, 477–494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, Y., Gu, C., Yuan, L., Wang, Y., Zhu, Y., Li, X., Luo, Q., Xiao, J., Jiang, D., Qian, M., et al. (2014). Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks. mBio 5, e01867.

    PubMed  PubMed Central  Google Scholar 

  • Kosmaczewski, S.G., Edwards, T.J., Han, S.M., Eckwahl, M.J., Meyer, B. I., Peach, S., Hesselberth, J.R., Wolin, S.L., and Hammarlund, M. (2014). The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. EMBO Rep 15, 1278–1285.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosmaczewski, S.G., Han, S.M., Han, B., Irving Meyer, B., Baig, H.S., Athar, W., Lin-Moore, A.T., Koelle, M.R., and Hammarlund, M. (2015). RNA ligation in neurons by RtcB inhibits axon regeneration. Proc Natl Acad Sci USA 112, 8451–8456.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y.M., Buso, N., and Lopez, R. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. Nucl Acids Res 43, W580–W584.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y.Q., Li, J.R., Du, J.F., Hu, M., Bai, H., Qi, J., Gao, C., Wei, T.T., Su, H., Jin, J.L., et al. (2011). Accurate assessment of antibiotic susceptibility and screening resistant strains of a bacterial population by linear gradient plate. Sci China Life Sci 54, 953–960.

    CAS  PubMed  Google Scholar 

  • Lu, Y., Liang, F.X., and Wang, X. (2014). A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol Cell 55, 758–770.

    PubMed  PubMed Central  Google Scholar 

  • Maughan, W.P., and Shuman, S. (2016). Distinct contributions of enzymic functional groups to the 2′,3′-cyclic phosphodiesterase, 3′-phosphate guanylylation, and 3′-ppG/5′-OH ligation steps of the Escherichia coli RtcB nucleic acid splicing pathway. J Bacteriol 198, 1294–1304.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., and Lopez, R. (2013). Analysis tool web services from the EMBL-EBI. Nucl Acids Res 41, W597–W600.

    PubMed  PubMed Central  Google Scholar 

  • Nandy, A., Saenz-Méndez, P., Gorman, A.M., Samali, A., and Eriksson, L. A. (2017). Homology model of the human tRNA splicing ligase RtcB. Proteins 85, 1983–1993.

    CAS  PubMed  Google Scholar 

  • Oberto, J. (2013). SyntTax: a web server linking synteny to prokaryotic taxonomy. BMC Bioinf 14, 4.

    Google Scholar 

  • Okada, C., Maegawa, Y., Yao, M., and Tanaka, I. (2006). Crystal structure of an RtcB homolog protein (PH1602-extein protein) from Pyrococcus horikoshii reveals a novel fold. Proteins 63, 1119–1122.

    CAS  PubMed  Google Scholar 

  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D. M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612.

    CAS  PubMed  Google Scholar 

  • Popow, J., Englert, M., Weitzer, S., Schleiffer, A., Mierzwa, B., Mechtler, K., Trowitzsch, S., Will, C.L., Lührmann, R., Söll, D., et al. (2011). HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331, 760–764.

    CAS  PubMed  Google Scholar 

  • Popow, J., Jurkin, J., Schleiffer, A., and Martinez, J. (2014). Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature 511, 104–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, A., Zhang, S., Rentas, C., Caldwell, K.A., and Caldwell, G.A. (2014). RTCB-1 mediates neuroprotection via XBP-1 mRNA splicing in the unfolded protein response pathway. J Neurosci 34, 16076–16085.

    PubMed  PubMed Central  Google Scholar 

  • Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5, 725–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Y., Sretavan, D., Salegio, E.A., Berg, J., Huang, X., Cheng, T., Xiong, X., Meltzer, S., Han, C., Nguyen, T.T., etal. (2015). Regulation of axon regeneration by the RNA repair and splicing pathway. Nat Neurosci 18, 817–825.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, N., Chakravarty, A.K., Maughan, B., and Shuman, S. (2011a). Novel mechanism of RNA repair by RtcB via sequential 2′,3′-cyclic phosphodiesterase and 3′-phosphate/5′-hydroxyl ligation reactions. J Biol Chem 286, 43134–43143.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, N., Meineke, B., and Shuman, S. (2011b). RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 286, 30253–30257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, N., and Shuman, S. (2011). RtcB is the RNA ligase component of an Escherichia coli RNA repair operon. J Biol Chem 286, 7727–7731.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temmel, H., Müller, C., Sauert, M., Vesper, O., Reiss, A., Popow, J., Martinez, J., and Moll, I. (2016). The RNA ligase RtcB reverses MazF-induced ribosome heterogeneity in Escherichia coli. Nucl Acids Res 1, gkw1018.

    Google Scholar 

  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015). The I-TASSER suite: protein structure and function prediction. Nat Methods 12, 7–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ygberg, S.E., Clements, M.O., Rytkönen, A., Thompson, A., Holden, D.W., Hinton, J.C.D., and Rhen, M. (2006). Polynucleotide phosphorylase negatively controls spv virulence gene expression in Salmonella enterica. Infection Immun 74, 1243–1254.

    CAS  Google Scholar 

  • Wang, Y., Song, F., Zhu, J., Zhang, S., Yang, Y., Chen, T., Tang, B., Dong, L., Ding, N., Zhang, Q., et al. (2017). GSA: genome sequence archive. Genom Proteom Bioinf 15, 14–18.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFC0903800), the National Scientific Foundation of China (31470180, 31471237, 31671350), the Programs of Beijing Municipal Science and Technology Project (Z171100001317011), the Scientific Research Project of Public Welfare Industry (2013FY114300, 201402018), the Key Research Program of Frontier Sciences, the Chinese Academy of Sciences (QYZDY-SSW-SMC017), and the CAS-TWAS President’s Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Kang or Jun Yu.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manwar, M.R., Shao, C., Shi, X. et al. The bacterial RNA ligase RtcB accelerates the repair process of fragmented rRNA upon releasing the antibiotic stress. Sci. China Life Sci. 63, 251–258 (2020). https://doi.org/10.1007/s11427-018-9405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9405-y

Keywords

Navigation