Skip to main content
Log in

Profiling of lysine-acetylated proteins in human urine

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

A biomarker is a measurable indicator associated with changes in physiological state or disease. In contrast to the blood which is under homeostatic controls, urine reflects changes in the body earlier and more sensitively, and is therefore a better biomarker source. Lysine acetylation is an abundant and highly regulated post-translational modification. It plays a pivotal role in modulating diverse biological processes and is associated with various important diseases. Enrichment or visualization of proteins with specific post-translational modifications provides a method for sampling the urinary proteome and reducing sample complexity. In this study, we used anti-acetyllysine antibody-based immunoaffinity enrichment combined with high-resolution mass spectrometry to profile lysine-acetylated proteins in normal human urine. A total of 629 acetylation sites on 315 proteins were identified, including some very low-abundance proteins. This is the first proteome-wide characterization of lysine acetylation proteins in normal human urine. Our dataset provides a useful resource for the further discovery of lysine-acetylated proteins as biomarkers in urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chou, M.F., and Schwartz, D. (2011). Biological sequence motif discovery using motif–x. Curr Protoc Bioinformatics Chapter 13, Unit 13, 15–24.

    Google Scholar 

  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., and Mann, M. (2009). Lysine acetylation targets protein complexes and co–regulates major cellular functions. Science 325, 834–840.

    Article  CAS  Google Scholar 

  • Decramer, S., Gonzalez de Peredo, A., Breuil, B., Mischak, H., Monsarrat, B., Bascands, J.L., and Schanstra, J.P. (2008). Urine in clinical proteomics. Mol Cell Proteom 7, 1850–1862.

    Article  CAS  Google Scholar 

  • Gao, Y.H. (2013). Urine—an untapped goldmine for biomarker discovery? Sci China Life Sci 56, 1145–1146.

    Article  Google Scholar 

  • Gu, W., and Roeder, R.G. (1997). Activation of p53 sequence–specific DNA binding by acetylation of the p53 C–terminal domain. Cell 90, 595–606.

    Article  CAS  Google Scholar 

  • Jia, L.L., Liu, X.J., Liu, L., Li, M.X., and Gao, Y.H. (2014). Urimem, a membrane that can store urinary proteins simply and economically, makes the large–scale storage of clinical samples possible. Sci China Life Sci 57, 336–339.

    Article  Google Scholar 

  • Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., et al. (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23, 607–618.

    Article  CAS  Google Scholar 

  • Li, M.L., Zhao, M.D., and Gao, Y.H. (2014). Changes of proteins induced by anticoagulants can be more sensitively detected in urine than in plasma. Sci China Life Sci 57, 649–656.

    Article  CAS  Google Scholar 

  • Li, Q.R., Fan, K.X., Li, R.X., Dai, J., Wu, C.C., Zhao, S.L., Wu, J.R., Shieh, C.H., and Zeng, R. (2010). A comprehensive and nonprefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine. Rapid Commun Mass Sp 24, 823–832.

    Article  CAS  Google Scholar 

  • Mann, M., and Jensen, O.N. (2003). Proteomic analysis of posttranslational modifications. Nat Biotechnol 21, 255–261.

    Article  CAS  Google Scholar 

  • Marimuthu, A., O'Meally, R.N., Chaerkady, R., Subbannayya, Y., Nanjappa, V., Kumar, P., Kelkar, D.S., Pinto, S.M., Sharma, R., Renuse, S., et al. (2011). A comprehensive map of the human urinary proteome. J Proteome Res 10, 2734–2743.

    Article  CAS  Google Scholar 

  • Menzies, K.J., Zhang, H., Katsyuba, E., and Auwerx, J. (2016). Protein acetylation in metabolism—metabolites and cofactors. Nat Rev Endocrinol 12, 43–60.

    Article  CAS  Google Scholar 

  • Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006). Global, in vivo, and site–specific phosphorylation dynamics in signaling networks. Cell 127, 635–648.

    Article  CAS  Google Scholar 

  • Petersen, B., Petersen, T.N., Andersen, P., Nielsen, M., and Lundegaard, C. (2009). A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 9, 51.

    Article  Google Scholar 

  • Pons, D., de Vries, F.R., van den Elsen, P.J., Heijmans, B.T., Quax, P.H.A., and Jukema, J.W. (2009). Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J 30, 266–277.

    Article  CAS  Google Scholar 

  • Rotilio, D., Della Corte, A., D’Imperio, M., Coletta, W., Marcone, S., Silvestri, C., Giordano, L., Di Michele, M., and Donati, M.B. (2012). Proteomics: bases for protein complexity understanding. Thrombosis Res 129, 257–262.

    Article  CAS  Google Scholar 

  • Vidali, G., Gershey, E.L., and Allfrey, V.G. (1968). Chemical studies of histone acetylation the distribution of εN–acetyllysine in calf thymus histones. J Biol Chem 243, 6361–6366.

    CAS  PubMed  Google Scholar 

  • Voelter–Mahlknecht, S. (2016). Epigenetic associations in relation to cardiovascular prevention and therapeutics. Clin Epigenet 8, 4.

    Article  Google Scholar 

  • Wang, L., Li, F., Sun, W., Wu, S., Wang, X., Zhang, L., Zheng, D., Wang, J., and Gao, Y. (2006). Concanavalin A–captured glycoproteins in healthy human urine. Mol Cell Proteom 5, 560–562.

    Article  CAS  Google Scholar 

  • Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., Li, H., Xie, L., Zhao, W., Yao, Y., et al. (2010). Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327, 1004–1007.

    Article  CAS  Google Scholar 

  • Yu, W., Lin, Y., Yao, J., Huang, W., Lei, Q., Xiong, Y., Zhao, S., and Guan, K.L. (2009). Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. J Biol Chem 284, 13669–13675.

    Article  CAS  Google Scholar 

  • Zhang, F., Cheng, X., Yuan, Y., Wu, J., and Gao, Y. (2015). Urinary microRNA can be concentrated, dried on membranes and stored at room temperature in vacuum bags. PeerJ 3, e1082.

    Article  Google Scholar 

  • Zhang, J., Sprung, R., Pei, J., Tan, X., Kim, S., Zhu, H., Liu, C.F., Grishin, N.V., and Zhao, Y. (2009). Lysine acetylation is a highly abundant and evolutionarily conserved modification inEscherichia Coli. Mol Cell Proteom 8, 215–225.

    Article  CAS  Google Scholar 

  • Zhang, P., Na, H., Liu, Z., Zhang, S., Xue, P., Chen, Y., Pu, J., Peng, G., Huang, X., Yang, F., et al. (2012). Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteom 11, 317–328.

    Article  Google Scholar 

  • Zhao, M., Li, M., Yang, Y., Guo, Z., Sun, Y., Shao, C., Li, M., Sun, W., and Gao, Y. (2017). A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep 7, 3024.

    Article  Google Scholar 

  • Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., et al. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004.

    Article  CAS  Google Scholar 

  • Zhu, X., Liu, X., Cheng, Z., Zhu, J., Xu, L., Wang, F., Qi, W., Yan, J., Liu, N., Sun, Z., et al. (2016). Quantitative analysis of global proteome and lysine acetylome reveal the differential impacts of VPA and SAHA on HL60 cells. Sci Rep 6, 19926.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFC0910202, 2016YFC1306300), the Beijing Natural Science Foundation (7172076), the Beijing cooperative construction project (110651103), the Beijing Normal University (11100704), the Peking Union Medical College Hospital (2016-2.27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhe Gao.

Additional information

Compliance and ethics The author(s) declare that they have no conflict of interest. The consent procedure and the study protocol were approved by the Institutional Review Board of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. (Project No. 007-2014). Written informed consent was obtained from each subject prior to the study.

Supporting Information

Figure S1 Overview of lysine acetylation in urine proteome of healthy humans.

Table S1 Acetylated peptides (Peptide-Spectrum Matches FDR<0.1%)

Table S2 Acetylated proteins (unique peptides≥1) with 629 Kac sites (AScore≥59) in normal human urine

Supporting Spectra S1 The represent MS/MS spectra for 761 lysine acetylated peptides.

Supporting Spectra S2 The remaining MS/MS spectra for 761 lysine acetylated peptides.

The supporting information is available online at http://life.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Wang, T., Huang, H. et al. Profiling of lysine-acetylated proteins in human urine. Sci. China Life Sci. 62, 1514–1520 (2019). https://doi.org/10.1007/s11427-017-9367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9367-6

Keywords

Navigation