Skip to main content
Log in

The role of T-cell immunoglobulin mucin-3 and its ligand galectin-9 in antitumor immunity and cancer immunotherapy

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cancer treatment in the past few years has been transformed by a new kind of therapy that targets the immune system instead of the cancer itself to reinvigorate antitumor immunity with astonishing results. However, primary and acquired resistance to this type of treatment, namely immune checkpoint blockade (ICB), continue to counter treatment efficacy. In many cases, resistance has been attributed to defective or chronically enhanced interferon signaling and/or upregulation of alternative immune checkpoints, including T-cell immunoglobulin mucin-3 (Tim-3) and its ligand galactin-9 (Gal-9). In this article, we briefly describe the current knowledge of common checkpoint resistance mechanisms, focusing on the Tim-3/Gal-9 pathway as an alternative checkpoint that holds great promise as another target for ICB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amezquita, R.A., and Kaech, S.M. (2017). Immunology: The chronicles of T-cell exhaustion. Nature 543, 190–191.

    Article  CAS  PubMed  Google Scholar 

  • Andzinski, L., Spanier, J., Kasnitz, N., Kröger, A., Jin, L., Brinkmann, M.M., Kalinke, U., Weiss, S., Jablonska, J., and Lienenklaus, S. (2016). Growing tumors induce a local STING dependent Type I IFN response in dendritic cells. Int J Cancer 139, 1350–1357.

    Article  CAS  PubMed  Google Scholar 

  • Baumeister, S.H., Freeman, G.J., Dranoff, G., and Sharpe, A.H. (2016). Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 34, 539–573.

    Article  CAS  PubMed  Google Scholar 

  • Benci, J.L., Xu, B., Qiu, Y., Wu, T.J., Dada, H., Twyman-Saint Victor, C., Cucolo, L., Lee, D.S.M., Pauken, K.E., Huang, A.C., Gangadhar, T.C., Amaravadi, R.K., Schuchter, L.M., Feldman, M.D., Ishwaran, H., Vonderheide, R.H., Maity, A., Wherry, E.J., and Minn, A.J. (2016). Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boivin, N., Baillargeon, J., Doßs, P.M.I.A., Roy, A.P., and Rangachari, M. (2015). Interferon-ß suppresses murine Th1 cell function in the absence of antigen-presenting cells. PLoS ONE 10, e0124802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boscher, C., Dennis, J.W., and Nabi, I.R. (2011). Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 23, 383–392.

    Article  CAS  PubMed  Google Scholar 

  • Boucheron, N., Sharif, O., Schebesta, A., Croxford, A., Raberger, J., Schmidt, U., Vigl, B., Bauer, J., Bankoti, R., Lassmann, H., Epstein, M.M., Knapp, S., Waisman, A., and Ellmeier, W. (2010). The protein tyrosine kinase Tec regulates a CD44highCD62L-Th17 subset. J Immunol 185, 5111–5119.

    Article  CAS  PubMed  Google Scholar 

  • Cao, E., Zang, X., Ramagopal, U.A., Mukhopadhaya, A., Fedorov, A., Fedorov, E., Zencheck, W.D., Lary, J.W., Cole, J.L., Deng, H., Xiao, H., Dilorenzo, T.P., Allison, J.P., Nathenson, S.G., and Almo, S.C. (2007). T cell immunoglobulin Mucin-3 crystal structure reveals a Galectin-9-independent ligand-binding surface. Immunity 26, 311–321.

    Article  CAS  PubMed  Google Scholar 

  • Chiba, S., Baghdadi, M., Akiba, H., Yoshiyama, H., Kinoshita, I., Dosaka-Akita, H., Fujioka, Y., Ohba, Y., Gorman, J.V., Colgan, J.D., Hirashima, M., Uede, T., Takaoka, A., Yagita, H., and Jinushi, M. (2012). Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13, 832–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, F.C., Shieh, S.J., and Sytwu, H.K. (2009). Attenuation of Th1 response through galectin-9 and T-cell Ig mucin 3 interaction inhibits autoimmune diabetes in NOD mice. Eur J Immunol 39, 2403–2411.

    Article  CAS  PubMed  Google Scholar 

  • Clayton, K.L., Haaland, M.S., Douglas-Vail, M.B., Mujib, S., Chew, G.M., Ndhlovu, L.C., and Ostrowski, M.A. (2014). T cell Ig and Mucin domain-containing protein 3 is recruited to the immune synapse, disrupts stable synapse formation, and associates with receptor phosphatases. J Immunol 192, 782–791.

    Article  CAS  PubMed  Google Scholar 

  • Critchley-Thorne, R.J., Simons, D.L., Yan, N., Miyahira, A.K., Dirbas, F.M., Johnson, D.L., Swetter, S.M., Carlson, R.W., Fisher, G.A., Koong, A., Holmes, S., and Lee, P.P. (2009). Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci USA 106, 9010–9015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daley, D., Mani, V.R., Mohan, N., Akkad, N., Ochi, A., Heindel, D.W., Lee, K.B., Zambirinis, C.P., Pandian, G.S., Savadkar, S., Torres-Hernandez, A., Nayak, S., Wang, D., Hundeyin, M., Diskin, B., Aykut, B., Werba, G., Barilla, R.M., Rodriguez, R., Chang, S., Gardner, L., Mahal, L.K., Ueberheide, B., and Miller, G. (2017). Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med 23, 556–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das, M., Zhu, C., and Kuchroo, V.K. (2017). Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 276, 97–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeKruyff, R.H., Bu, X., Ballesteros, A., Santiago, C., Chim, Y.L.E., Lee, H.H., Karisola, P., Pichavant, M., Kaplan, G.G., Umetsu, D.T., Freeman, G.J., and Casasnovas, J.M. (2010). T cell/transmembrane, Ig, and Mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. JI 184, 1918–1930.

    CAS  Google Scholar 

  • Du, W., Yang, M., Turner, A., Xu, C., Ferris, R.L., Huang, J., Kane, L.P., and Lu, B. (2017). TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci 18, pii: E645.

    Article  PubMed  Google Scholar 

  • Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J., and Schreiber, R.D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3, 991–998.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, G.P., Bruce, A.T., Sheehan, K.C.F., Shankaran, V., Uppaluri, R., Bui, J.D., Diamond, M.S., Koebel, C.M., Arthur, C., White, J.M., and Schreiber, R.D. (2005). A critical function for type I interferons in cancer immunoediting. Nat Immunol 6, 722–729.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, G.J., Casasnovas, J.M., Umetsu, D.T., and DeKruyff, R.H. (2010). TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunological Rev 235, 172–189.

    Article  CAS  Google Scholar 

  • Fuertes, M.B., Woo, S.R., Burnett, B., Fu, Y.X., and Gajewski, T.F. (2013). Type I interferon response and innate immune sensing of cancer. Trends Immunol 34, 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Shi, L.Z., Zhao, H., Chen, J., Xiong, L., He, Q., Chen, T., Roszik, J., Bernatchez, C., Woodman, S.E., Chen, P.L., Hwu, P., Allison, J.P., Futreal, A., Wargo, J.A., and Sharma, P. (2016). Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gieseke, F., Kruchen, A., Tzaribachev, N., Bentzien, F., Dominici, M., and Müller, I. (2013). Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur J Immunol 43, 2741–2749.

    Article  CAS  PubMed  Google Scholar 

  • Guan, H., Nagarkatti, P.S., and Nagarkatti, M. (2011). CD44 reciprocally regulates the differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis. J Immunol 186, 6955–6964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, H.T., Anderson, A.C., Tan, W.G., West, E.E., Ha, S.J., Araki, K., Freeman, G.J., Kuchroo, V.K., and Ahmed, R. (2010). Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA 107, 14733–14738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan, D.H., Shankaran, V., Dighe, A.S., Stockert, E., Aguet, M., Old, L.J., and Schreiber, R.D. (1998). Demonstration of an interferon-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95, 7556–7561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashio, Y., Nakamura, K., Abedin, M.J., Seki, M., Nishi, N., Yoshida, N., Nakamura, T., and Hirashima, M. (2003). Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J Immunol 170, 3631–3636.

    Article  CAS  PubMed  Google Scholar 

  • Katlinski, K.V., Gui, J., Katlinskaya, Y.V., Ortiz, A., Chakraborty, R., Bhattacharya, S., Carbone, C.J., Beiting, D.P., Girondo, M.A., Peck, A.R., Puré, E., Chatterji, P., Rustgi, A.K., Diehl, J.A., Koumenis, C., Rui, H., and Fuchs, S.Y. (2017). Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell 31, 194–207.

    Article  CAS  PubMed  Google Scholar 

  • Keryer-Bibens, C., Pioche-Durieu, C., Villemant, C., Souquère, S., Nishi, N., Hirashima, M., Middeldorp, J., and Busson, P. (2006). Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 6, 283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikushige, Y., Miyamoto, T., Yuda, J., Jabbarzadeh-Tabrizi, S., Shima, T., Takayanagi, S., Niiro, H., Yurino, A., Miyawaki, K., Takenaka, K., Iwasaki, H., and Akashi, K. (2015). A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 17, 341–352.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.N., Lee, H.J., Jeon, M.S., Yi, T.G., and Song, S.U. (2015). Galectin-9 is involved in immunosuppression mediated by human bone marrowderived clonal mesenchymal stem cells. Immune Netw 15, 241–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleffel, S., Posch, C., Barthel, S.R., Mueller, H., Schlapbach, C., Guenova, E., Elco, C.P., Lee, N., Juneja, V.R., Zhan, Q., Lian, C.G., Thomi, R., Hoetzenecker, W., Cozzio, A., Dummer, R., Mihm Jr., M.C., Flaherty, K.T., Frank, M.H., Murphy, G.F., Sharpe, A.H., Kupper, T.S., and Schatton, T. (2015). Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 162, 1242–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klibi, J., Niki, T., Riedel, A., Pioche-Durieu, C., Souquere, S., Rubinstein, E., Le Moulec, S., Moulec, S.L.E., Guigay, J., Hirashima, M., Guemira, F., Adhikary, D., Mautner, J., and Busson, P. (2009). Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 113, 1957–1966.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, A., Yamashita, T., Tamura, H., Zhao, W., Tsuji, T., Shimizu, M., Shinya, E., Takahashi, H., Tamada, K., Chen, L., Dan, K., and Ogata, K. (2010). Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes. Blood 116, 1124–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama, S., Akbay, E.A., Li, Y.Y., Herter-Sprie, G.S., Buczkowski, K.A., Richards, W.G., Gandhi, L., Redig, A.J., Rodig, S.J., Asahina, H., Jones, R.E., Kulkarni, M.M., Kuraguchi, M., Palakurthi, S., Fecci, P.E., Johnson, B.E., Janne, P.A., Engelman, J.A., Gangadharan, S.P., Costa, D.B., Freeman, G.J., Bueno, R., Hodi, F.S., Dranoff, G., Wong, K.K., and Hammerman, P.S. (2016). Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7, 10501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.J., Cowey, C.L., Lao, C.D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., Ferrucci, P.F., Hill, A., Wagstaff, J., Carlino, M.S., Haanen, J.B., Maio, M., Marquez-Rodas, I., McArthur, G.A., Ascierto, P.A., Long, G.V., Callahan, M.K., Postow, M.A., Grossmann, K., Sznol, M., Dreno, B., Bastholt, L., Yang, A., Rollin, L.M., Horak, C., Hodi, F.S., and Wolchok, J.D. (2015). Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373, 23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Su, E.W., Zhu, C., Hainline, S., Phuah, J., Moroco, J.A., Smithgall, T.E., Kuchroo, V.K., and Kane, L.P. (2011). Phosphotyrosine-dependent coupling of Tim-3 to T-cell receptor signaling pathways. Mol Cellular Biol 31, 3963–3974.

    Article  CAS  Google Scholar 

  • Li, C.W., Lim, S.O., Xia, W., Lee, H.H., Chan, L.C., Kuo, C.W., Khoo, K.H., Chang, S.S., Cha, J.H., Kim, T., Hsu, J.L., Wu, Y., Hsu, J.M., Yamaguchi, H., Ding, Q., Wang, Y., Yao, J., Lee, C.C., Wu, H.J., Sahin, A.A., Allison, J.P., Yu, D., Hortobagyi, G.N., and Hung, M.C. (2016a). Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7, 12632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Shayan, G., Avery, L., Jie, H.B., Gildener-Leapman, N., Schmitt, N., Lu, B.F., Kane, L.P., and Ferris, R.L. (2016b). Tumor-infiltrating Tim-3(+) T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology 5, e1200778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim, S.O., Li, C.W., Xia, W., Cha, J.H., Chan, L.C., Wu, Y., Chang, S.S., Lin, W.C., Hsu, J.M., Hsu, Y.H., Kim, T., Chang, W.C., Hsu, J.L., Yamaguchi, H., Ding, Q., Wang, Y., Yang, Y., Chen, C.H., Sahin, A.A., Yu, D., Hortobagyi, G.N., and Hung, M.C. (2016). Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, F.T., and Rabinovich, G.A. (2005). Galectins as modulators of tumour progression. Nat Rev Cancer 5, 29–41.

    Article  CAS  PubMed  Google Scholar 

  • Lv, K., Zhang, Y., Zhang, M., Zhong, M., and Suo, Q. (2013). Galectin-9 promotes TGF-ß1-dependent induction of regulatory T cells via the TGF- ß/Smad signaling pathway. Mol Med Rep 7, 205–210.

    Article  CAS  PubMed  Google Scholar 

  • Minn, A.J., and Wherry, E.J. (2016). Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell 165, 272–275.

    Article  CAS  PubMed  Google Scholar 

  • Monney, L., Sabatos, C.A., Gaglia, J.L., Ryu, A., Waldner, H., Chernova, T., Manning, S., Greenfield, E.A., Coyle, A.J., Sobel, R.A., Freeman, G.J., and Kuchroo, V.K. (2002). Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 536–541.

    Article  CAS  PubMed  Google Scholar 

  • Moritoki, M., Kadowaki, T., Niki, T., Nakano, D., Soma, G., Mori, H., Kobara, H., Masaki, T., Kohno, M., and Hirashima, M. (2013). Galectin-9 ameliorates clinical severity of MRL/lpr lupus-prone mice by inducing plasma cell apoptosis independently of Tim-3. PLoS ONE 8, e60807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujib, S., Jones, R.B., Lo, C., Aidarus, N., Clayton, K., Sakhdari, A., Benko, E., Kovacs, C., and Ostrowski, M.A. (2012). Antigen-independent induction of Tim-3 expression on human T cells by the common?-chain cytokines IL-2, IL-7, IL-15, and IL-21 is associated with proliferation and is dependent on the phosphoinositide 3-kinase pathway. J Immunol 188, 3745–3756.

    Article  CAS  PubMed  Google Scholar 

  • Muller, U., Steinhoff, U., Reis, L.F.L., Hemmi, S., Pavlovic, J., Zinkernagel, R.M., and Aguet, M. (1994). Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, M., Akiba, H., Takeda, K., Kojima, Y., Hashiguchi, M., Azuma, M., Yagita, H., and Okumura, K. (2009). Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113, 3821–3830.

    Article  CAS  PubMed  Google Scholar 

  • Ng, C.T., Sullivan, B.M., Teijaro, J.R., Lee, A.M., Welch, M., Rice, S., Sheehan, K.C.F., Schreiber, R.D., and Oldstone, M.B.A. (2015). Blockade of interferon beta, but not interferon alpha, signaling controls persistent viral infection. Cell Host Microbe 17, 653–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirschl, C.J., Suárez-Fariñas, M., Izar, B., Prakadan, S., Dannenfelser, R., Tirosh, I., Liu, Y., Zhu, Q., Devi, K.S.P., Carroll, S.L., Chau, D., Rezaee, M., Kim, T.G., Huang, R., Fuentes-Duculan, J., Song-Zhao, G.X., Gulati, N., Lowes, M.A., King, S.L., Quintana, F.J., Lee, Y.S., Krueger, J.G., Sarin, K.Y., Yoon, C.H., Garraway, L., Regev, A., Shalek, A.K., Troyanskaya, O., and Anandasabapathy, N. (2017). IFNγ-dependent tissue-immune homeostasis is co-opted in the tumor microenvironment. Cell 170, 127–141.e15.

    Article  CAS  PubMed  Google Scholar 

  • Oomizu, S., Arikawa, T., Niki, T., Kadowaki, T., Ueno, M., Nishi, N., Yamauchi, A., Hattori, T., Masaki, T., and Hirashima, M. (2012a). Cell surface Galectin-9 expressing Th cells regulate Th17 and Foxp3+ Treg development by Galectin-9 secretion. PLoS ONE 7, e48574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oomizu, S., Arikawa, T., Niki, T., Kadowaki, T., Ueno, M., Nishi, N., Yamauchi, A., and Hirashima, M. (2012b). Galectin-9 suppresses Th17 cell development in an IL-2-dependent but Tim-3-independent manner. Clinical Immunol 143, 51–58.

    Article  CAS  Google Scholar 

  • Pardoll, D.M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, B.S., Rautela, J., and Hertzog, P.J. (2016). Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16, 131–144.

    Article  PubMed  Google Scholar 

  • Pitt, J.M., Vétizou, M., Daillère, R., Roberti, M.P., Yamazaki, T., Routy, B., Lepage, P., Boneca, I.G., Chamaillard, M., Kroemer, G., and Zitvogel, L. (2016). Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44, 1255–1269.

    Article  CAS  PubMed  Google Scholar 

  • Rangachari, M., Zhu, C., Sakuishi, K., Xiao, S., Karman, J., Chen, A., Angin, M., Wakeham, A., Greenfield, E.A., Sobel, R.A., Okada, H., McKinnon, P.J., Mak, T.W., Addo, M.M., Anderson, A.C., and Kuchroo, V.K. (2012). Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18, 1394–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatos, C.A., Chakravarti, S., Cha, E., Schubart, A., Sánchez-Fueyo, A., Zheng, X.X., Coyle, A.J., Strom, T.B., Freeman, G.J., and Kuchroo, V.K. (2003). Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol 4, 1102–1110.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, R.D., Old, L.J., and Smyth, M.J. (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570.

    Article  CAS  PubMed  Google Scholar 

  • Sehrawat, S., Reddy, P.B.J., Rajasagi, N., Suryawanshi, A., Hirashima, M., and Rouse, B.T. (2010). Galectin-9/TIM-3 interaction regulates virusspecific primary and memory CD8+ T cell response. PLoS Pathog 6, e1000882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seki, M., Oomizu, S., Sakata, K.M., Sakata, A., Arikawa, T., Watanabe, K., Ito, K., Takeshita, K., Niki, T., Saita, N., Nishi, N., Yamauchi, A., Katoh, S., Matsukawa, A., Kuchroo, V., and Hirashima, M. (2008). Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clinical Immunol 127, 78–88.

    Article  CAS  Google Scholar 

  • Shankaran, V., Ikeda, H., Bruce, A.T., White, J.M., Swanson, P.E., Old, L.J., and Schreiber, R.D. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity.. Nature 410, 1107–1111.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Hu-Lieskovan, S., Wargo, J.A., and Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Sundararajan, A., Suryawanshi, A., Kumar, N., Veiga-Parga, T., Kuchroo, V.K., Thomas, P.G., Sangster, M.Y., and Rouse, B.T. (2011). T cell immunoglobulin and mucin protein-3 (Tim-3)/Galectin-9 interaction regulates influenza A virus-specific humoral and CD8 T-cell responses. Proc Natl Acad Sci USA 108, 19001–19006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe, A.H. (2017). Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol Rev 276, 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Du, L., Lin, L., and Wang, Y. (2017). Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 16, 35–52.

    Article  CAS  PubMed  Google Scholar 

  • Shin, D.S., Zaretsky, J.M., Escuin-Ordinas, H., Garcia-Diaz, A., Hu-Lieskovan, S., Kalbasi, A., Grasso, C.S., Hugo, W., Sandoval, S., Torrejon, D.Y., Palaskas, N., Rodriguez, G.A., Parisi, G., Azhdam, A., Chmielowski, B., Cherry, G., Seja, E., Berent-Maoz, B., Shintaku, I.P., Le, D.T., Pardoll, D.M., Diaz Jr, L.A., Tumeh, P.C., Graeber, T.G., Lo, R.S., Comin-Anduix, B., and Ribas, A. (2017). Primary resistance to PD-1 blockade mediated byJAK1/2 mutations. Cancer Discov 7, 188–201.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D., and Lotze, M.T. (2012). Tumor immunity times out: TIM-3 and HMGB1. Nat Immunol 13, 808–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiemann, S., and Baum, L.G. (2016). Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol 34, 243–264.

    Article  CAS  PubMed  Google Scholar 

  • Türeci, Ö., Schmitt, H., Fadle, N., Pfreundschuh, M., and Sahin, U. (1997). Molecular definition of a novel human galectin which is immunogenic in patients with Hodgkin’s disease. J Biol Chem 272, 6416–6422.

    Article  PubMed  Google Scholar 

  • Wada, J., Ota, K., Kumar, A., Wallner, E.I., and Kanwar, Y.S. (1997). Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin.. J Clin Invest 99, 2452–2461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wherry, E.J. (2011). T cell exhaustion. Nat Immunol 12, 492–499.

    Article  CAS  PubMed  Google Scholar 

  • Woo, S.R., Fuertes, M.B., Corrales, L., Spranger, S., Furdyna, M.J., Leung, M.Y.K., Duggan, R., Wang, Y., Barber, G.N., Fitzgerald, K.A., Alegre, M.L., and Gajewski, T.F. (2014). STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, C., Thalhamer, T., Franca, R.F., Xiao, S., Wang, C., Hotta, C., Zhu, C., Hirashima, M., Anderson, A.C., and Kuchroo, V.K. (2014). Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41, 270–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, L., Anderson, D.E., Kuchroo, J., and Hafler, D.A. (2008). Lack of TIM-3 immunoregulation in multiple sclerosis. J Immunol 180, 4409–4414.

    Article  CAS  PubMed  Google Scholar 

  • Yang, R.Y., Rabinovich, G.A., and Liu, F.T. (2008). Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10, e17.

    Article  PubMed  Google Scholar 

  • Zaretsky, J.M., Garcia-Diaz, A., Shin, D.S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D.Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., Saco, J., Homet Moreno, B., Mezzadra, R., Chmielowski, B., Ruchalski, K., Shintaku, I.P., Sanchez, P.J., Puig-Saus, C., Cherry, G., Seja, E., Kong, X., Pang, J., Berent-Maoz, B., Comin-Anduix, B., Graeber, T.G., Tumeh, P.C., Schumacher, T.N.M., Lo, R.S., and Ribas, A. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375, 819–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Q., Munger, M.E., Veenstra, R.G., Weigel, B.J., Hirashima, M., Munn, D.H., Murphy, W.J., Azuma, M., Anderson, A.C., Kuchroo, V.K., and Blazar, B.R. (2011). Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117, 4501–4510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., Zheng, X.X., Strom, T.B., and Kuchroo, V.K. (2005). The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6, 1245–1252.

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M.J., and Kroemer, G. (2015). Type I interferons in anticancer immunity. Nat Rev Immunol 15, 405–414.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the following: National Institutes of Health (CCSG CA16672); Cancer Prevention & Research Institutes of Texas (DP150052 and RP160710); National Breast Cancer Foundation, Inc.; Breast Cancer Research Foundation (BCRF-17-069); Patel Memorial Breast Cancer Endowment Fund; The University of Texas MD Anderson-China Medical University and Hospital Sister Institution Fund; Ministry of Science and Technology, International Research-intensive Centers of Excellence in Taiwan (I-RiCE; MOST 105-2911-I-002-302); Ministry of Health and Welfare, China Medical University Hospital Cancer Research Center of Excellence (MOHW106-TDU-B-212-144003); and Center for Biological Pathways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mien-Chie Hung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Hung, MC. The role of T-cell immunoglobulin mucin-3 and its ligand galectin-9 in antitumor immunity and cancer immunotherapy. Sci. China Life Sci. 60, 1058–1064 (2017). https://doi.org/10.1007/s11427-017-9176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9176-7

Keywords

Navigation