Skip to main content
Log in

Expansion of pathogen recognition specificity in plants using pattern recognition receptors and artificially designed decoys

Science China Life Sciences Aims and scope Submit manuscript

Abstract

Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by plant pattern recognition receptors (PRRs) localized on the cell surface to activate immune responses. This PAMP-triggered immunity (PTI) confers resistance to a broad range of pathogenic microbes and, therefore, has a great potential for genetically engineering broad-spectrum resistance by transferring PRRs across plant families. Pathogenic effectors secreted by phytopathogens often directly target and inhibit key components of PTI signaling pathways via diverse biochemical mechanisms. In some cases, plants have evolved to produce decoy proteins that mimic the direct virulence target, which senses the biochemical activities of pathogenic effectors. This kind of perception traps the effectors of erroneous targeting and results in the activation of effector-triggered immunity (ETI) instead of suppressing PTI. This mechanism suggests that artificially designed decoy proteins could be used to generate new recognition specificities in a particular plant. In this review, we summarize recent advances in research investigating PAMP recognition by PRRs and virulence effector surveillance by decoy proteins. Successful expansion of recognition specificities, conferred by the transgenic expression of EF-Tu receptor (EFR) and AvrPphB susceptible 1 (PBS1) decoys, has highlighted the considerable potential of PRRs and artificially designed decoys to expand plant resistance spectra and the need to further identify novel PRRs and decoys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramovitch, R.B., Anderson, J.C., and Martin, G.B. (2006). Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7, 601–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ade, J., DeYoung, B.J., Golstein, C., and Innes, R.W. (2007). Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci USA 104, 2531–2536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H.T., Zhu, S., Qiu, J.L., Micheelsen, P., Rocher, A., Petersen, M., Newman, M.A., Bjørn Nielsen, H., Hirt, H., Somssich, I., Mattsson, O., and Mundy, J. (2005). The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24, 2579–2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002).MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983.

    Article  CAS  PubMed  Google Scholar 

  • Ausubel, F.M. (2005). Are innate immune signalling pathways in plants and animals conserved? NAT Immunol 6, 973–979.

    Article  CAS  PubMed  Google Scholar 

  • Böhm, H., Albert, I., Oome, S., Raaymakers, T.M., Van den Ackerveken, G., and Nürnberger, T. (2014). A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog 10, e1004491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bethke, G., Unthan, T., Uhrig, J.F., Poschl, Y., Gust, A.A., Scheel, D., and Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci USA 106, 8067–8072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittel, P., and Robatzek, S. (2007). Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10, 335–341.

    Article  CAS  PubMed  Google Scholar 

  • Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe- associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379–406.

    Article  CAS  PubMed  Google Scholar 

  • Boller, T., and He, S.Y. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324, 742–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner, F., Rosahl, S., Lee, J., Rudd, J.J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., and Nürnberger, T. (2002). Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21, 6681–6688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y., Liang, Y., Tanaka, K., Nguyen, C.T., Jedrzejczak, R.P., Joachimiak, A., and Stacey, G. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3, e03766.

    Article  PubMed Central  Google Scholar 

  • Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J.D.G., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500.

    Article  CAS  PubMed  Google Scholar 

  • Coaker, G., Falick, A., and Staskawicz, B. (2005). Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308, 548–550.

    Article  CAS  PubMed  Google Scholar 

  • Cui, H., Xiang, T., and Zhou, J.M. (2009). Plant immunity: a lesson from pathogenic bacterial effector proteins. Cell Microbiol 11, 1453–1461.

    Article  CAS  PubMed  Google Scholar 

  • Djamei, A., Pitzschke, A., Nakagami, H., Rajh, I., and Hirt, H. (2007). Trojan horse strategy in agrobacterium transformation: abusing MAPK defense signaling. Science 318, 453–456.

    Article  CAS  PubMed  Google Scholar 

  • Erbs, G., Silipo, A., Aslam, S., De Castro, C., Liparoti, V., Flagiello, A., Pucci, P., Lanzetta, R., Parrilli, M., Molinaro, A., Newman, M.A., and Cooper, R.M. (2008). Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem Biol 15, 438–448.

    Article  CAS  PubMed  Google Scholar 

  • Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18, 265–276.

    Article  CAS  PubMed  Google Scholar 

  • Felix, G., Regenass, M., and Boller, T. (1993). Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 4, 307–316.

    Article  CAS  Google Scholar 

  • Feng, F., Yang, F., Rong, W., Wu, X., Zhang, J., Chen, S., He, C., and Zhou, J.M. (2012). A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases.Nature 485, 114–118.

    Article  CAS  PubMed  Google Scholar 

  • Fritz-Laylin, L.K., Krishnamurthy, N., Tör, M., Sjölander, K.V., and Jones, J.D.G. (2005). Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol 138, 611–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, M., Liu, J., Bi, D., Zhang, Z., Cheng, F., Chen, S., and Zhang, Y. (2008). MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res 18, 1190–1198.

    Article  CAS  PubMed  Google Scholar 

  • Gaulin, E., Dramé, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., Khatib, M., Mazarguil, H., Villalba-Mateos, F., Kamoun, S., Mazars, C., Dumas, B., Bottin, A., Esquerré-Tugayé, M.T., and Rickauer, M. (2006). Cellulose binding domains of a phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18, 1766–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez-Ibanez, S., Hann, D.R., Ntoukakis, V., Petutschnig, E., Lipka, V., and Rathjen, J.P. (2009). AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19, 423–429.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18, 277–284.

    Article  PubMed  Google Scholar 

  • Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M., and Dangl, J.L. (2006). Subterfuge and manipulation: Type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60, 425–449.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, M.G. (1996). Microbial elicitors and their receptors in plants. Annu Rev Phytopathol 34, 387–412.

    Article  CAS  PubMed  Google Scholar 

  • He, S.Y., Huang, H.C., and Collmer, A. (1993). Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73, 1255–1266.

    Article  CAS  PubMed  Google Scholar 

  • Heese, A., Hann, D.R., Gimenez-Ibanez, S., Jones, A.M.E., He, K., Li, J., Schroeder, J.I., Peck, S.C., and Rathjen, J.P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104, 12217–12222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, J., Barlet, X., Deslandes, L., Hirsch, J., Feng, D.X., Somssich, I., and Marco, Y. (2008). Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PLoS ONE 3, e2589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., and Valent, B. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19, 4004–4014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J.D.G., Vance, R.E., and Dangl, J.L. (2016). Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395.

    Article  PubMed  Google Scholar 

  • Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J.D., Shirasu, K., Menke, F., Jones, A., and Zipfel, C. (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54, 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103, 11086–11091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, S., Yang, F., Li, L., Chen, H., Chen, S., and Zhang, J. (2015). The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1- ETHYL METHANESULFONATE-SUPPRESSOR1 is a direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity. Plant Physiol 167, 1076–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S.H., Qi, D., Ashfield, T., Helm, M., and Innes, R.W. (2016). Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351, 684–687.

    Article  CAS  PubMed  Google Scholar 

  • Kourelis, J., van der Hoorn, R.A.L., and Sueldo, D.J. (2016). Decoy engineering: the next step in resistance breeding. Trends Plant Sci 21, 371–373.

    Article  CAS  PubMed  Google Scholar 

  • Krasileva, K.V., Dahlbeck, D., and Staskawicz, B.J. (2010). Activation of an Arabidopsis resistance protein is specified by the in planta association of its Leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22, 2444–2458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. (2004). The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16, 3496–3507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, H.P., Smoker, M., Rallapalli, G., Thomma, B.P.H.J., Staskawicz, B., Jones, J.D.G., and Zipfel, C. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28, 365–369.

    Article  CAS  PubMed  Google Scholar 

  • Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Trémousaygue, D., Kraut, A., Zhou, B., Levaillant, M., Adachi, H., Yoshioka, H., Raffaele, S., Berthomé, R., Couté, Y., Parker, J.E., and Deslandes, L. (2015). A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161, 1074–1088.

    Article  CAS  PubMed  Google Scholar 

  • Li, B., Jiang, S., Yu, X., Cheng, C., Chen, S., Cheng, Y., Yuan, J.S., Jiang, D., He, P., and Shan, L. (2015). Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell 27, 839–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, F., Cheng, C., Cui, F., de Oliveira, M.V.V., Yu, X., Meng, X., Intorne, A.C., Babilonia, K., Li, M., Li, B., Chen, S., Ma, X., Xiao, S., Zheng, Y., Fei, Z., Metz, R.P., Johnson, C.D., Koiwa, H., Sun, W., Li, Z., de Souza Filho, G.A., Shan, L., and He, P. (2014). Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity. Cell Host Microbe 16, 748–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, B., Meng, X., Shan, L., and He, P. (2016). Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe 19, 641–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., Chen, S., and Zhou, J.M. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329–338.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Yu, Y., Zhou, Z., and Zhou, J.M. (2016). Plant pattern-recognition receptors controlling innate immunity. Sci China Life Sci 59, 878–888.

    Article  PubMed  Google Scholar 

  • Liang, X., Ding, P., Lian, K., Wang, J., Ma, M., Li, L., Li, L., Li, M., Zhang, X., Chen, S., Zhang, Y., and Zhou, J.M. (2016). Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. eLife 5, e13568.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., Fan, F., Wang, J., Jin, C., Chang, J., Zhou, J.M., and Chai, J. (2012a). Chitin-induced dimerization activates a plant immune receptor. Science 336, 1160–1164.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Li, J.F., Ao, Y., Qu, J., Li, Z., Su, J., Zhang, Y., Liu, J., Feng, D., Qi, K., He, Y., Wang, J., and Wang, H.B. (2012b). Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24, 3406–3419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X., Tyler, B.M., and Wang, Y. (2015). A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27, 2057–2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., and Zhang, S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23, 1639–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkouropoulos, G., Andreasson, E., Hess, D., Boller, T., and Peck, S.C. (2008). An Arabidopsis protein phosphorylated in response to microbial elicitation, AtPHOS32, is a substrate of MAP kinases 3 and 6. J Biol Chem 283, 10493–10499.

    Article  CAS  PubMed  Google Scholar 

  • Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., and Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104, 19613–19618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhtar, M.S., Deslandes, L., Auriac, M.C., Marco, Y., and Somssich, I.E. (2008). The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J 56, 935–947.

    Article  CAS  PubMed  Google Scholar 

  • Nürnberger, T., Brunner, F., Kemmerling, B., and Piater, L. (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198, 249–266.

    Article  PubMed  Google Scholar 

  • Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W.R., Hahlbrock, K., and Scheel, D. (1994). High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78, 449–460.

    Article  PubMed  Google Scholar 

  • Oome, S., Raaymakers, T.M., Cabral, A., Samwel, S., Böhm, H., Albert, I., Nürnberger, T., and Van den Ackerveken, G. (2014). Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci USA 111, 16955–16960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottmann, C., Luberacki, B., Küfner, I., Koch, W., Brunner, F., Weyand, M., Mattinen, L., Pirhonen, M., Anderluh, G., Seitz, H.U., Nürnberger, T., and Oecking, C. (2009). A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci USA 106, 10359–10364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peck, S.C., Nuhse, T.S., Hess, D., Iglesias, A., Meins, F., and Boller, T. (2001). Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13, 1467–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzschke, A., Schikora, A., and Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12, 421–426.

    Article  CAS  PubMed  Google Scholar 

  • Pruitt, R.N., Schwessinger, B., Joe, A., Thomas, N., Liu, F., Albert, M., Robinson, M.R., Chan, L.J.G., Luu, D.D., Chen, H., Bahar, O., Daudi, A., De Vleesschauwer, D., Caddell, D., Zhang, W., Zhao, X., Li, X., Heazlewood, J.L., Ruan, D., Majumder, D., Chern, M., Kalbacher, H., Midha, S., Patil, P.B., Sonti, R.V., Petzold, C.J., Liu, C.C., Brodbelt, J.S., Felix, G., and Ronald, P.C. (2015). The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci Adv 1, e1500245–e1500245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu, J.L., Zhou, L., Yun, B.W., Nielsen, H.B., Fiil, B.K., Petersen, K., Mackinlay, J., Loake, G.J., Mundy, J., and Morris, P.C. (2008). Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148, 212–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qutob, D., Kemmerling, B., Brunner, F., Küfner, I., Engelhardt, S., Gust, A.A., Luberacki, B., Seitz, H.U., Stahl, D., Rauhut, T., Glawischnig, E., Schween, G., Lacombe, B., Watanabe, N., Lam, E., Schlichting, R., Scheel, D., Nau, K., Dodt, G., Hubert, D., Gijzen, M., and Nürnberger, T. (2006). Phytotoxicity and innate immune responses induced by Nep1- like proteins. Plant Cell 18, 3721–3744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Römer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., and Lahaye, T. (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318, 645–648.

    Article  PubMed  Google Scholar 

  • Ron, M., and Avni, A. (2004). The receptor for the fungal elicitor ethyleneinducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16, 1604–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarris, P.F., Duxbury, Z., Huh, S.U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G., Saucet, S.B., Wirthmueller, L., Menke, F.L.H., Sohn, K.H., and Jones, J.D.G. (2015). A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161, 1089–1100.

    Article  CAS  PubMed  Google Scholar 

  • Schoonbeek, H.J., Wang, H.H., Stefanato, F.L., Craze, M., Bowden, S., Wallington, E., Zipfel, C., and Ridout, C.J. (2015). Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol 206, 606–613.

    Article  CAS  PubMed  Google Scholar 

  • Schulze, B., Mentzel, T., Jehle, A.K., Mueller, K., Beeler, S., Boller, T., Felix, G., and Chinchilla, D. (2010). Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 285, 9444–9451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwessinger, B., Bahar, O., Thomas, N., Holton, N., Nekrasov, V., Ruan, D., Canlas, P.E., Daudi, A., Petzold, C.J., Singan, V.R., Kuo, R., Chovatia, M., Daum, C., Heazlewood, J.L., Zipfel, C., and Ronald, P.C. (2015). Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLoS Pathog 11, e1004809.

    Article  PubMed  PubMed Central  Google Scholar 

  • Séjalon-Delmas, N., Mateos, F.V., Bottin, A., Rickauer, M., Dargent, R., and Esquerré-Tugayé, M.T. (1997). Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var. nicotianae, a fungal pathogen of tobacco. Phytopathology 87, 899–909.

    PubMed  Google Scholar 

  • Shabab, M., Shindo, T., Gu, C., Kaschani, F., Pansuriya, T., Chintha, R., Harzen, A., Colby, T., Kamoun, S., and van der Hoorn, R.A.L. (2008). Fungal effector protein AVR2 targets diversifying defense-related Cys proteases of tomato. Plant Cell 20, 1169–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, L., He, P., Li, J., Heese, A., Peck, S.C., Nürnberger, T., Martin, G.B., and Sheen, J. (2008). Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4, 17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, F., Merritt, P.M., Bao, Z., Innes, R.W., and Dixon, J.E. (2002). A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Y., Sharma, P., Silva, F.G., and Ronald, P. (2002). The Xanthomonas oryzae pv.◊oryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5′-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol Microbiol 44, 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H., Shen, Q., Qi, Y., Yan, H., Nie, H., Chen, Y., Zhao, T., Katagiri, F., and Tang, D. (2013). BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis. Plant Cell 25, 1143–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H., and Shibuya, N. (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64, 204–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinya, T., Yamaguchi, K., Desaki, Y., Yamada, K., Narisawa, T., Kobayashi, Y., Maeda, K., Suzuki, M., Tanimoto, T., Takeda, J., Nakashima, M., Funama, R., Narusaka, M., Narusaka, Y., Kaku, H., Kawasaki, T., and Shibuya, N. (2014). Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27. Plant J 79, 56–66.

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Rodriguez, M.C., Adams-Phillips, L., Liu, Y., Wang, H., Su, S.H., Jester, P.J., Zhang, S., Bent, A.F., and Krysan, P.J. (2007). MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143, 661–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swiderski, M.R., and Innes, R.W. (2001). The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26, 101–112.

    Google Scholar 

  • Tang, X., Frederick, R.D., Zhou, J., Halterman, D.A., Jia, Y., and Martin, G.B. (1996). Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274, 2060–2063.

    Article  CAS  PubMed  Google Scholar 

  • Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E., and Kamoun, S. (2007). A phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143, 364–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trdá, L., Boutrot, F., Claverie, J., Brulé, D., Dorey, S., and Poinssot, B. (2015). Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci 6,219.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Hoorn, R.A.L., and Kamoun, S. (2008). From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009–2017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan, J., Zhang, X.C., Neece, D., Ramonell, K.M., Clough, S., Kim, S.Y., Stacey, M.G., and Stacey, G. (2008). A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20, 471–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, G., Roux, B., Feng, F., Guy, E., Li, L., Li, N., Zhang, X., Lautier, M., Jardinaud, M.F., Chabannes, M., Arlat, M., Chen, S., He, C., Noël, L.D., and Zhou, J.M. (2015). The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Z.M., Laby, R.J., Zumoff, C.H., Bauer, D.W., He, S.Y., Collmer, A., and Beer, S.V. (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Willmann, R., Lajunen, H.M., Erbs, G., Newman, M.A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.J., Cullimore, J.V., Jehle, A.K., Götz, F., Kulik, A., Molinaro, A., Lipka, V., Gust, A.A., and Nürnberger, T. (2011). Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA 108, 19824–19829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang, T., Zong, N., Zou, Y., Wu, Y., Zhang, J., Xing, W., Li, Y., Tang, X., Zhu, L., Chai, J., and Zhou, J.M. (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18, 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Xing, W., Zou, Y., Liu, Q., Liu, J., Luo, X., Huang, Q., Chen, S., Zhu, L., Bi, R., Hao, Q., Wu, J.W., Zhou, J.M., and Chai, J. (2007). The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449, 243–247.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, K., Yamaguchi, K., Shirakawa, T., Nakagami, H., Mine, A., Ishikawa, K., Fujiwara, M., Narusaka, M., Narusaka, Y., Ichimura, K., Kobayashi, Y., Matsui, H., Nomura, Y., Nomoto, M., Tada, Y., Fukao, Y., Fukamizo, T., Tsuda, K., Shirasu, K., Shibuya, N., and Kawasaki, T. (2016). The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J 35, 2468–2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen, S., Mengiste, T., Zhang, Y., and Zhou, J.M. (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7, 290–301.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures. Mol Plant 3, 783–793.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Kars, I., Essenstam, B., Liebrand, T.W.H., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., van den Ackerveken, G., and van Kan, J.A.L. (2014). Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 164, 352–364.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J.M., and Chai, J. (2008). Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11, 179–185.

    Article  PubMed  Google Scholar 

  • Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB11020600), National Natural Science Foundation of China (31571968, 31300234), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Qin, J., Wang, K. et al. Expansion of pathogen recognition specificity in plants using pattern recognition receptors and artificially designed decoys. Sci. China Life Sci. 60, 797–805 (2017). https://doi.org/10.1007/s11427-017-9064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9064-5

Keywords

Navigation