Skip to main content
Log in

CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

CRISPR/Cas9 is a versatile genome-editing tool which is widely used for modifying the genome of both prokaryotic and eukaryotic organisms for basic research and applications. An increasing number of reports have demonstrated that CRISPR/Cas9-mediated genome editing is a powerful technology for gene therapy. Here, we review the recent advances in CRISPR/Cas9-mediated gene therapy in animal models via different strategies and discuss the challenges as well as future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abifadel, M., Varret, M., Rabès, J.P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., Derré, A., Villéger, L., Farnier, M., Beucler, I., Bruckert, E., Chambaz, J., Chanu, B., Lecerf, J.M., Luc, G., Moulin, P., Weissenbach, J., Prat, A., Krempf, M., Junien, C., Seidah, N.G., and Boileau, C. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34, 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Bakondi, B., Lv, W., Lu, B., Jones, M.K., Tsai, Y., Kim, K.J., Levy, R., Akhtar, A.A., Breunig, J.J., Svendsen, C.N., and Wang, S. (2016). In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24, 556–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtsson, N.E., Hall, J.K., Odom, G.L., Phelps, M.P., Andrus, C.R., Hawkins, R.D., Hauschka, S.D., Chamberlain, J.R., and Chamberlain, J.S. (2017). Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8, 14454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, D.B.T., Platt, R.J., and Zhang, F. (2015). Therapeutic genome editing: prospects and challenges. Nat Med 21, 121–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyranoski, D. (2016). Chinese scientists to pioneer first human CRISPR trial. Nature 535, 476–477.

    Article  CAS  PubMed  Google Scholar 

  • Dever, D.P., Bak, R.O., Reinisch, A., Camarena, J., Washington, G., Nicolas, C.E., Pavel-Dinu, M., Saxena, N., Wilkens, A.B., Mantri, S., Uchida, N., Hendel, A., Narla, A., Majeti, R., Weinberg, K.I., and Porteus, M.H. (2016). CRISPR/Cas9 ß-globin gene targeting in human haematopoietic stem cells. Nature 539, 384–389.

    Article  CAS  PubMed  Google Scholar 

  • DeWitt, M.A., Magis, W., Bray, N.L., Wang, T., Berman, J.R., Urbinati, F., Heo, S.J., Mitros, T., Muñoz, D.P., Boffelli, D., Kohn, D.B., Walters, M.C., Carroll, D., Martin, D.I.K., and Corn, J.E. (2016). Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med 8, 360ra134–360ra134.

    Article  Google Scholar 

  • Ding, Q., Strong, A., Patel, K.M., Ng, S.L., Gosis, B.S., Regan, S.N., Cowan, C.A., Rader, D.J., and Musunuru, K. (2014). Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circul Res 115, 488–492.

    Article  CAS  Google Scholar 

  • Doudna, J.A., and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096–1258096.

    Article  PubMed  Google Scholar 

  • Friedmann, T., and Roblin, R. (1972). Gene therapy for human genetic disease? Science 175, 949–955.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., and Sander, J.D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, Y., Ma, Y., Li, Q., Sun, Z., Ma, L., Wu, L., Wang, L., Zeng, L., Shao, Y., Chen, Y., Ma, N., Lu, W., Hu, K., Han, H., Yu, Y., Huang, Y., Liu, M., and Li, D. (2016). CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8, 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H.R., Hwang, J., Kim, J.I., and Kim, J.S. (2015). Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Meth 12, 237–243.

    Article  CAS  Google Scholar 

  • Kim, K., Park, S.W., Kim, J.H., Lee, S.H., Kim, D., Koo, T., Kim, K.E., Kim, J.H., and Kim, J.S. (2017). Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 27, 419–426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotterman, M.A., and Schaffer, D.V. (2014). Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15, 445–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuscu, C., Arslan, S., Singh, R., Thorpe, J., and Adli, M. (2014). Genomewide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32, 677–683.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., Li, Y., Gao, N., Wang, L., Lu, X., Zhao, Y., and Liu, M. (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31, 681–683.

    Article  CAS  PubMed  Google Scholar 

  • Long, C., Amoasii, L., Mireault, A.A., McAnally, J.R., Li, H., Sanchez-Ortiz, E., Bhattacharyya, S., Shelton, J.M., Bassel-Duby, R., and Olson, E.N. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403.

    Article  CAS  PubMed  Google Scholar 

  • Long, C., McAnally, J.R., Shelton, J.M., Mireault, A.A., Bassel-Duby, R., and Olson, E.N. (2014). Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, H., Tu, L.C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., and Pederson, T. (2016). Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34, 528–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama, T., Dougan, S.K., Truttmann, M.C., Bilate, A.M., Ingram, J.R., and Ploegh, H.L. (2015). Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33, 538–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naldini, L. (2011). ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 12, 301–315.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, C.E., Hakim, C.H., Ousterout, D.G., Thakore, P.I., Moreb, E.A., Castellanos Rivera, R.M., Madhavan, S., Pan, X., Ran, F.A., Yan, W.X., Asokan, A., Zhang, F., Duan, D., and Gersbach, C.A. (2016). In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, T.H., and Anegon, I. (2016). Successful correction of hemophilia by CRISPR/Cas9 genome editing in vivo: delivery vector and immune responses are the key to success. EMBO Mol Med 8, 439–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nygaard, S., Barzel, A., Haft, A., Major, A., Finegold, M., Kay, M.A., and Grompe, M. (2016). A universal system to select gene-modified hepatocytes in vivo. Sci Transl Med 8, 342ra79–342ra79.

    Article  Google Scholar 

  • Ou, Z., Niu, X., He, W., Chen, Y., Song, B., Xian, Y., Fan, D., Tang, D., and Sun, X. (2016). The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human ß-thalassemia in mice. Sci Rep 6, 32463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankowicz, F.P., Barzi, M., Legras, X., Hubert, L., Mi, T., Tomolonis, J.A., Ravishankar, M., Sun, Q., Yang, D., Borowiak, M., Sumazin, P., Elsea, S.H., Bissig-Choisat, B., and Bissig, K.D. (2016). Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun 7, 12642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, C.Y., Kim, D.H., Son, J.S., Sung, J.J., Lee, J., Bae, S., Kim, J.H., Kim, D.W., and Kim, J.S. (2015). Functional correction of large factor VIII Gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17, 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak, V., Lin, S., Guilinger, J.P., Ma, E., Doudna, J.A., and Liu, D.R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31, 839–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash, V., Moore, M., and Yáñez-Muñoz, R.J. (2016). Current progress in therapeutic gene editing for monogenic diseases. Mol Ther 24, 465–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A., and Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., and Zhang, F. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwank, G., Koo, B.K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C.K., Nieuwenhuis, E.E.S., Beekman, J.M., and Clevers, H. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658.

    Article  CAS  PubMed  Google Scholar 

  • Song, J., Yang, D., Xu, J., Zhu, T., Chen, Y.E., and Zhang, J. (2016). RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun 7, 10548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staahl, B.T., Benekareddy, M., Coulon-Bainier, C., Banfal, A.A., Floor, S.N., Sabo, J.K., Urnes, C., Munares, G.A., Ghosh, A., and Doudna, J.A. (2017). Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol in press doi: 10.1038/nbt.3806.

  • Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E.J., Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z., Kurita, M., Hishida, T., Li, M., Aizawa, E., Guo, S., Chen, S., Goebl, A., Soligalla, R.D., Qu, J., Jiang, T., Fu, X., Jafari, M., Esteban, C.R., Berggren, W.T., Lajara, J., Nuñez-Delicado, E., Guillen, P., Campistol, J.M., Matsuzaki, F., Liu, G.H., Magistretti, P., Zhang, K., Callaway, E.M., Zhang, K., and Belmonte, J.C.I. (2016). In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabebordbar, M., Zhu, K., Cheng, J.K.W., Chew, W.L., Widrick, J.J., Yan, W.X., Maesner, C., Wu, E.Y., Xiao, R., Ran, F.A., Cong, L., Zhang, F., Vandenberghe, L.H., Church, G.M., and Wagers, A.J. (2016). In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A.J., Le, L.P., Aryee, M.J., and Joung, J.K. (2015). GUIDE-seq enables genome-wide profiling of offtarget cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C.X., Sather, B.D., Wang, X., Adair, J., Khan, I., Singh, S., Lang, S., Adams, A., Curinga, G., Kiem, H.P., Miao, C.H., Rawlings, D.J., and Torbett, B.E. (2014). Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood 124, 913–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Shao, Y., Guan, Y., Li, L., Wu, L., Chen, F., Liu, M., Chen, H., Ma, Y., Ma, X., Liu, M., and Li, D. (2015). Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos. Sci Rep 5, 17517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, X., Scott, D.A., Kriz, A.J., Chiu, A.C., Hsu, P.D., Dadon, D.B., Cheng, A.W., Trevino, A.E., Konermann, S., Chen, S., Jaenisch, R., Zhang, F., and Sharp, P.A. (2014). Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32, 670–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., and Li, J. (2013). Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13, 659–662.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Zhou, H., Fan, X., Zhang, Y., Zhang, M., Wang, Y., Xie, Z., Bai, M., Yin, Q., Liang, D., Tang, W., Liao, J., Zhou, C., Liu, W., Zhu, P., Guo, H., Pan, H., Wu, C., Shi, H., Wu, L., Tang, F., and Li, J. (2015). Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 25, 67–79.

    Article  CAS  PubMed  Google Scholar 

  • Xie, C., Zhang, Y.P., Song, L., Luo, J., Qi, W., Hu, J., Lu, D., Yang, Z., Zhang, J., Xiao, J., Zhou, B., Du, J.L., Jing, N., Liu, Y., Wang, Y., Li, B.L., Song, B.L., and Yan, Y. (2016). Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res 26, 1099–1111.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Wang, L., Bell, P., McMenamin, D., He, Z., White, J., Yu, H., Xu, C., Morizono, H., Musunuru, K., Batshaw, M.L., and Wilson, J.M. (2016). A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34, 334–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, H., Song, C.Q., Dorkin, J.R., Zhu, L.J., Li, Y., Wu, Q., Park, A., Yang, J., Suresh, S., Bizhanova, A., Gupta, A., Bolukbasi, M.F., Walsh, S., Bogorad, R.L., Gao, G., Weng, Z., Dong, Y., Koteliansky, V., Wolfe, S.A., Langer, R., Xue, W., and Anderson, D.G. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34, 328–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, H., Xue, W., Chen, S., Bogorad, R.L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P.A., Jacks, T., and Anderson, D.G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32, 551–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X.H., Tee, L.Y., Wang, X.G., Huang, Q.S., and Yang, S.H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4, e264.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31371455, 31171318 to Dali Li, 81330049 to Mingyao Liu), the Science and Technology Commission of Shanghai Municipality (14140900300 to Dali Li).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyao Liu or Dali Li.

Additional information

Contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, L., Liu, M. et al. CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy. Sci. China Life Sci. 60, 468–475 (2017). https://doi.org/10.1007/s11427-017-9057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9057-2

Keywords

Navigation