Skip to main content
Log in

A 60-year journey of mycorrhizal research in China: Past, present and future directions

  • Reviews
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The significance of mycorrhizas (fungal roots in 90% of land plants) in plant nutrient acquisition and growth, element biogeochemical cycling and maintaining of terrestrial ecosystem structures has been globally established for more than 120 years. Great progress in mycorrhizal research in the past 60 years (1950–2009, 1981–2009 in particular) has also been made across China, particularly in the mainland, Hong Kong and Taiwan. For instance, a total of 20 new and ∼120 records of arbuscular mycorrhizal (AM) fungal species, 30 new and ∼800 records of ectomycorrhizal (EM) fungal species, a dozen of new and ∼100 records of orchid mycorrhizal (OM) fungal species have been isolated by morphological observation and/or molecular identification in China since the 1950s. Great accomplishment has also been made in the following area, including fungal species richness and genetic structure, relationships between species composition and plant taxa, effects of mycorrhizal fungi on plant nutrient uptake and growth, resistances to pathogens and interactions with other soil microorganisms, potential of mycorrhizal fungi in phytoremediation and/or land reclamation, alterations of enzymatic activities in mycorrhizal plants, and elevated CO2 and O3 on root colonization and species diversity. Unfortunately, the international community cannot easily appreciate almost all Chinese mycorrhizal studies since the vast majority of them have been published in Chinese and/or in China-based journals. The aim of this review is to make a comprehensive exposure of the past and present China’s major mycorrhizal research to the whole world, and then to suggest potential directions for the enhancement of future mycorrhizal research within and/or between the Chinese and international mycorrhizal community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myers N, Mittermeler R A, Mittermeler C G, et al. Biodiversity hotspots for conservation priorities. Nature, 2000, 403:853–858 1:CAS:528:DC%2BD3cXhs1Olsr4%3D, 10706275, 10.1038/35002501

    PubMed  CAS  Google Scholar 

  2. Mao X L. Wild edible fungi and their habitat in China (in Chinese). Acta Mycol Sinica, 1988, 7:36–43

    Google Scholar 

  3. Mao X L. The Macrofungi in China (in Chinese). Zhengzhou: Henan Science and Technology Press, 2000. 1–719

    Google Scholar 

  4. Liu R J, Chen Y L. Mycorrhizology (in Chinese). Beijing: Science Press, 2007. 1–447

    Google Scholar 

  5. Smith S E, Read D J. Mycorrhizal Symbiosis. 3rd ed. San Diego: Academic Press, 2008. 1–787

    Google Scholar 

  6. Wang B, Qiu Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 2006, 16:299–363 1:STN:280:DC%2BD28vit1OltA%3D%3D, 16845554, 10.1007/s00572-005-0033-6

    PubMed  CAS  Google Scholar 

  7. Brundrett M C. Mycorrhizal associations and other means of nutrition of vascular plants, understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil, 2009, 320:37–77 1:CAS:528:DC%2BD1MXmvFGjt7g%3D, 10.1007/s11104-008-9877-9

    CAS  Google Scholar 

  8. Frank B. On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A. B. Frank’s classic paper of 1885). Mycorrhiza, 2005, 15:267–275 1:STN:280:DC%2BD2M3psVahtw%3D%3D, 15549482, 10.1007/s00572-004-0329-y

    PubMed  CAS  Google Scholar 

  9. Chiu W F. The Russulaceae of Yunnan. Lloydia (Cincinnati), 1945, 8:172–200

    Google Scholar 

  10. Chiu W F. The Boletes of Yunnan. Mycologia, 1948, 40:199–231 10.2307/3755085

    Google Scholar 

  11. Chang H W, Xu G H, Zhou C L. Preliminary study of mycorrhization and humic acids on survival and formation of ectomycorrhizas in Pinus sylvestris seedlings (in Chinese). Sci Silvae Sinicae, 1964, 10:61–64

    Google Scholar 

  12. Hsieh C M, Shih T H. Observations on the morphological characteristica of mycorrhizae and mycorrhizal fungi of Casuarina (in Chinese). Sci Silvae Sinicae, 1964, 9:52–56

    Google Scholar 

  13. Guo X Z, Bi G C. Forest Mycorrhizas and Application Techniques (in Chinese). Beijing: China Forestry Publishing House, 1989. 1–305

    Google Scholar 

  14. Gong M Q, Chen Y L, Zhong C L. Mycorrhizal Research and Application (in Chinese). Beijing: China Forestry Publishing House, 1997. 1–223

    Google Scholar 

  15. Turner P D. Morphological influence of exudates of mycorrhizal and non-mycorrhizal fungi on excised root cultures of Pinus sylvestris L. Nature, 1962, 194:551–552 10.1038/194551a0

    Google Scholar 

  16. Hung L L, Chien C Y. Two new mycorrhizal syntheses: Pisolithus tinctorius and Suillus bovinus with Taiwan red pine. Mycologia, 1979, 71:202–206 10.2307/3759233

    Google Scholar 

  17. Tzean S S, Huang Y S. The occurrence and formation of vesicular-arbuscular mycorrhizae of citrus and maize (in Chinese). Bot Bull Acad Sinica, 1980, 21:119–134

    Google Scholar 

  18. Tang Z Y, Zang M. A supplement to the manual of Endogonaceae and a new species, Glomus citricolum (in Chinese). Acta Bot Yunnanica, 1984, 6:295–304

    Google Scholar 

  19. Fang Y C, Liu Y R, Fang R. The isolation and identification of endomycorrhizal fungi on tobacco (in Chinese). Acta Mycol Sinica, 1986, 5:185–190

    Google Scholar 

  20. Wu C G, Chen Z C. The Endogonaceae of Taiwan. I. A preliminary investigation on Endogonaceae of bamboo vegetation at Chitou areas, central Taiwan (in Chinese). Taiwania, 1986, 31:65–87

    Google Scholar 

  21. Wu C G, Chen Z C. The Endogonaceae of Taiwan. II. Two new species of Sclerocystis from Taiwan. Trans Mycol Soc Repub China, 1987, 2:73–83

    Google Scholar 

  22. Hu H T. Study on the endomycorrhizae of Chinese fir (Cunninghamia lanceolata Hooker) and Taiwania (Taiwania cryptomerioides Hay.) (in Chinese). Quart J Chin For, 1988, 21:45–72

    Google Scholar 

  23. Peng S B, Shen C Y, Chiu W F. Some endogonaceous mycorrhizal fungi from China (in Chinese). Acta Mycol Sinica, 1990, 9:169–175

    Google Scholar 

  24. Wang Y, Xie Z X. A preliminary survey of ectomycorrhizal fungi of some forest trees in China (in Chinese). Acta Mycol Sinica, 1983, 2:59–61 1:CAS:528:DyaL3sXlt1Grsbc%3D

    CAS  Google Scholar 

  25. Wang Y, Xie Z X. Study of Lactarius from northeast of China (in Chinese). Acta Mycol Sinica, 1983, 3:81–86

    Google Scholar 

  26. Wu R J, Tan H C. Ecological distribution of 23 ectomycorrhizal fungus species (in Chinese). Sci Silvae Sinicae, 1983, 19:327–331

    Google Scholar 

  27. Zhou C L, Han G Z, Zhou Y Z, et al. Studies on some ectomycorrhizal fungi of pine (in Chinese). Acta Ecologica Sinica, 1983, 3:103–109 1:STN:280:DyaL2c%2Fht1Gjuw%3D%3D

    CAS  Google Scholar 

  28. Zang M. A tentative subvision and new species of Boletus from Yunnan, China (in Chinese). Acta Mycol Sinica, 1983, 2:12–17

    Google Scholar 

  29. Zang M. A taxonomic and geographic study on the Song Rong (Matsutake) group and its allied species (in Chinese). Acta Mycol Sinica, 1990, 9:113–127

    Google Scholar 

  30. Ying J Z. A study on Russula viridirubrolimbata sp. nov. and its related species of subsection Virescentinas (in Chinese). Acta Mycol Sinica, 1983, 2:34–37

    Google Scholar 

  31. Ying J Z. Studies on the genus Russula Pers. from China. I. New taxa of Russula from China. Acta Mycol Sinica, 1989, 8:205–209

    Google Scholar 

  32. Liu B. New species and new records of hypogeous fungi from China. Acta Mycol Sinica, 1985, 4:84–89

    Google Scholar 

  33. Ying J Z, Ma Q M. New taxa and records of the genus Strobilomyces in China. Acta Mycol Sinica, 1985, 4:95–102

    Google Scholar 

  34. Chen K K, Xuan Y. An investigation on ectomycorrhizal fungi from the subalpine coniferous forest region, N.W. Yunnan (in Chinese). Acta Bot Yunnanica, 1986, 8:229–304

    Google Scholar 

  35. Bi G C, Zang M, Guo X Z. Distribution of ectomycorrhizal fungi under major forest types in alpine coniferous regions of Northwestern Yunnan (in Chinese). Sci Silvae Sinicae, 1989, 25:33–39

    Google Scholar 

  36. Mao X L. The resources of macrofungi from the Mt. Namjagbarwa region in Xizang (Tibet) (in Chinese). Acta Mycol Sinica, 1985, 4:197–207

    Google Scholar 

  37. Mao X L. Taxonomic study on the genus Amanita from Xizang, China (in Chinese). Acta Mycol Sinica, 1990, 9:25–30

    Google Scholar 

  38. Mao X L. Taxonomic study on the genus Amanita from Xizang, China (in Chinese). Acta Mycol Sinica, 1990, 9:206–217

    Google Scholar 

  39. Zang M, Chen K K. Ectomycorrhizal fungi associated with alpine conifers from Southwestern China (in Chinese). Acta Mycol Sinica, 1990, 9:128–136

    Google Scholar 

  40. Su J L, Li M J. Some physiological studies of VA mycorrhizae in tea plants (in Chinese). J Tea Sci, 1987, 7:7–14

    Google Scholar 

  41. Zhang M C, Jin Y J, Ma J, et al. The changing of microbial ecological types after the improvement of ginseng soil (in Chinese). J Jilin Agri Univ, 1990, 12:42–46

    Google Scholar 

  42. Zhang M C, Li Y S, Wang M. Observation of vesicular-arbuscular mycorrhizas in Asarum heterotropoides fr. Schmidt var. Mandshurtcum (maxim.) Kitag., Lonicera edulis turcz. and Actinidia arguta plants (in Chinese). J Jilin Agri Univ, 1988, 11:61–64

    Google Scholar 

  43. Wei G T, Wang H G. Effects of VA mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura stramonium L. (in Chinese). Sci Agr Sinica, 1989, 22:56–61 1:CAS:528:DyaK3cXhvFGhurc%3D

    CAS  Google Scholar 

  44. Young C C, Juang T C, Guo H Y. Effects of VA mycorrhizal inoculation on the soybean growth, yield, N2-fixation and absorption of mineral phosphates (in Chinese). J Agri Assoc China, 1984, 128:29–42 1:CAS:528:DyaL2MXhvVChtb4%3D

    CAS  Google Scholar 

  45. Young C C, Chao C C, Cheung W F. Effects of application of VA mycorrhiza and rock phosphate on corn growth in two Taiwan soils (in Chinese). J Agri Assoc China, 1986, 136:15–24

    Google Scholar 

  46. Young C C, Juang T C, Guo H Y. The effect of inoculation with vesicular-arbuscular mycorrhizal fungi on soybean yield and mineral phosphorus utilization in subtropical-tropical soils. Plant Soil, 1986, 95:245–253 1:CAS:528:DyaL28Xmt1Ghtrg%3D, 10.1007/BF02375076

    CAS  Google Scholar 

  47. Young C C, Juang T C, Guo H Y. Effects of rhizobium and vesicular-arbuscular mycorrhiza inoculations on nodulation, symbiotic nitrogen-fixation and soybean yield in subtropical-tropical fields. Biol Fert Soil, 1988, 6:165–169 10.1007/BF00257668

    Google Scholar 

  48. Liu R J. Effects of vesicular-arbuscular mycorrhizas and phosphorus on water status and growth of apple. J Plant Nutr, 1989, 12:997–1017 1:CAS:528:DyaL1MXlsFaksb8%3D, 10.1080/01904168909364009

    CAS  Google Scholar 

  49. Young C C. Effects of phosphorus-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the growth of tree species in subtropical-tropical soils. Soil Sci Plant Nutr, 1990, 36:225–231

    Google Scholar 

  50. Tang Z Y, Lai Y, He S L. A preliminary study on the effect of vesicular arbuscular mycorrhizal fungus on calcium uptake of citrus seedlings (in Chinese). Acta Mycol Sinica, 1989, 8:133–139 1:CAS:528:DyaK3cXhtlyiurg%3D

    CAS  Google Scholar 

  51. Tang Z Y, He S L. A preliminary study on the effect of vesicular arbuscular mycorrhizal fungus on iron uptake of citrus seedlings (in Chinese). Acta Hortic Sinica, 1990, 17:257–261

    Google Scholar 

  52. Wang H G, Wu G Y, Li H Q. Effect of vesicular-arbuscular mycorrhiza on the growth of Phaseolus aureus and its water use (in Chinese). Acta Pedol Sinica, 1989, 26:394–400

    Google Scholar 

  53. Tzean S S, Chu C L, Su H J. Spiroplasmalike organisms in a vesicular-arbuscular mycorrhizal fungus and its mycoparasite. Phytopathology, 1983, 73:989–991 10.1094/Phyto-73-989

    Google Scholar 

  54. Tzean S S, Chu C L, Su H J. Helical organisms in vesicular-arbuscular mycorrhizal fungus. Yale J Biol Med, 1984, 57:892

    Google Scholar 

  55. Xu J T, Guo S X. Fungus associated with nutrition of seed germination of Gastrodia elata—Mycena osmundicola Lange (in Chinese). Acta Mycol Sinica, 1989, 8:221–226

    Google Scholar 

  56. Wu C G. Glomales of Taiwan. IV. A monograph of Sclerocystis (Glomaceae). Mycotaxon, 1993, 49:327–349

    Google Scholar 

  57. Haug I, Weber R, Oberwinklerl F, et al. The mycorrhizal status of Taiwanese trees and the description of some ectomycorrhizal types. Trees, 1994, 8:237–253 10.1007/BF00196628

    Google Scholar 

  58. Wu C G, Liu Y S, Hwuang Y L, et al. Glomales of Taiwan. V. Glomus chimonobambusae and Entrophospora kentinensis, spp. nov. Mycotaxon, 1995, 53:283–294

    Google Scholar 

  59. Liu R J, Li X L. Arbuscular Mycorrhizas and Their Applications (in Chinese). Beijing: Science Press, 2000. 1–224

    Google Scholar 

  60. Li X L, Feng G. Ecophysiology of Arbuscular Mycorrhizal Fungi (in Chinese). Beijing: Huawen Publishing House, 2001. 1–358

    Google Scholar 

  61. Zhang Y, Guo L D, Liu R J. Arbuscular mycorrhizal fungi associated with most common plants in subtropical region of Dujiangyan. Mycosystema, 2003, 22:204–210

    Google Scholar 

  62. Wang F Y, Lin X G, Zhou J M. Biodiversity of AM fungi in China (in Chinese). Chin J Ecol, 2004, 23:149–154

    Google Scholar 

  63. Gai J P, Christie P, Feng G, et al. Twenty years of research on biodiversity and distribution of arbuscular mycorrhizal fungi in China: A review. Mycorrhiza, 2006, 16:229–239 1:STN:280:DC%2BD28vhvFehsQ%3D%3D, 16284782, 10.1007/s00572-005-0023-8

    PubMed  CAS  Google Scholar 

  64. Zhang Y, Guo L D. Arbuscular mycorrhizal structure and fungi associated with mosses. Mycorrhiza, 2007, 17:319–325 17277943, 10.1007/s00572-007-0107-8

    PubMed  Google Scholar 

  65. Yang Y H, Chen Y N, Li W H. Arbuscular mycorrhizal fungi infection in desert riparian forest and its environmental implications: A case study in the lower reach of Tarim River. Prog Nat Sci, 2008, 18:983–991 10.1016/j.pnsc.2008.02.009

    Google Scholar 

  66. Bao Y Y, Yan W. Arbuscular mycorrhizae and their structural types on common plants in grasslands of midwestern Inner Mongolia (in Chinese). Biodiv Sci, 2004, 12:501–508

    Google Scholar 

  67. Shi Z Y, Zhang L Y, Li X L, et al. Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals in plant communities of Junggar Basin, northwest China. Appl Soil Ecol, 2007, 35:10–20 1:CAS:528:DC%2BD2sXlsFWhtrg%3D, 10.1016/j.apsoil.2006.06.002

    CAS  Google Scholar 

  68. Shi Z Y, Chen Y L, Feng G, et al. Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan Island, China. Mycorrhiza, 2006, 16:81–87 1:STN:280:DC%2BD287itFGisg%3D%3D, 16133253, 10.1007/s00572-005-0017-6

    PubMed  CAS  Google Scholar 

  69. Li L F, Zhang Y, Zhao Z W. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol Ecol, 2005, 54:367–373 1:CAS:528:DC%2BD2MXhtFSisLfN, 10.1016/j.femsec.2005.04.011

    CAS  Google Scholar 

  70. Li L F, Zhang Y, Zhao Z W. Arbuscular mycorrhizal colonization and spore density across different land-use types in a hot and arid ecosystem, Southwest China. J Plant Nutr Soil Sci, 2007, 170:419–425 1:CAS:528:DC%2BD2sXntlCgtL8%3D, 10.1002/jpln.200625034

    CAS  Google Scholar 

  71. Li A R, Guan K Y. Mycorrhizal and dark septate endophytic fungi of Pedicularis species from northwest of Yunnan Province, China. Mycorrhiza, 2007, 17:103–109 17109144, 10.1007/s00572-006-0081-6

    PubMed  Google Scholar 

  72. Li A R, Guan K Y. Arbuscular mycorrhizal fungi may serve as another nutrient strategy for some hemiparasitic species of Pedicularis (Orobanchaceae). Mycorrhiza, 2008, 18:429–436 1:CAS:528:DC%2BC3cXhtlCis7Y%3D, 18704514, 10.1007/s00572-008-0196-z

    PubMed  CAS  Google Scholar 

  73. Bao Y Y, Yan W, Zhang M Q. Arbuscular mycorrhizal fungi associated with most common plants in grassland of Inner Mongolia (in Chinese). Mycosystema, 2007, 26:51–58

    Google Scholar 

  74. Su Y Y, Guo L D. Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 2007, 17:689–693 17882458, 10.1007/s00572-007-0151-4

    PubMed  Google Scholar 

  75. Tian C Y, Shi Z Y, Chen Z C, et al. Arbuscular mycorrhizal associations in the Gurbantunggut Desert (in Chinese). Chin Sci Bull, 2006, 51:140–146 10.1007/s11434-006-8218-8

    Google Scholar 

  76. Shi Z Y, Chen Z C, Feng G, et al. Diversity and zonal distribution of arbuscular mycorrhizal fungi on the northern slopes of the Tianshan Mountains. Sci Chin Ser D-Earth Sci, 2007, 50:135–141 10.1007/s11430-007-5014-5

    Google Scholar 

  77. Shi Z Y, Feng G, Christie P, et al. Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza, 2006, 16:269–275 1:STN:280:DC%2BD28zivVChtg%3D%3D, 16568336, 10.1007/s00572-006-0041-1

    PubMed  CAS  Google Scholar 

  78. Zhao J L, He X L. Arbuscular mycorrhizal fungi associated with the clonal plants in Mu Us sandland of China. Prog Nat Sci, 2007, 17:1296–1302

    Google Scholar 

  79. Li T, Li J P, Zhao Z W. Arbuscular mycorrhizas in a valley-type savanna in southwest China. Mycorrhiza, 2004, 14:323–327 10.1007/s00572-003-0277-y

    Google Scholar 

  80. Li T, Zhao Z W. Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China. Appl Soil Ecol, 2005, 29:135–141 10.1016/j.apsoil.2004.12.001

    Google Scholar 

  81. Ye A H, Yang L, Wu Y J. A study on arbuscular mycorrhizal fungal biodiversity of five crops (in Chinese). Chin Agri Sci Bull, 2003, 19:69–73

    Google Scholar 

  82. Wang Y Y, Vestberg M, Walker C, et al. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan province of mainland China. Mycorrhiza, 2008, 18:59–68 18224350, 10.1007/s00572-008-0161-x

    PubMed  Google Scholar 

  83. Li L F, Li T, Zhao Z W. Differences of arbuscular mycorrhizal fungal diversity and community between a cultivated land, an old field, and a never-cultivated field in a hot and arid ecosystem of southwest China. Mycorrhiza, 2007, 17:655–665 1:CAS:528:DC%2BD2sXnsVOlu74%3D, 17653773, 10.1007/s00572-007-0143-4

    PubMed  CAS  Google Scholar 

  84. Zhao Z W, Wang G H, Yang L. Biodiversity of arbuscular mycorrhizal fungi in a tropical rainforest of Xishuangbanna, southwest China. Fung Div, 2003, 13:233–242

    Google Scholar 

  85. Zhang Y, Guo L D. Two new records of arbuscular mycorrhizal fungi in China. Mycosystema, 2005, 24:465–467

    Google Scholar 

  86. Gai J P, Cai X B, Feng G, et al. Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau. Mycorrhiza, 2006, 16:151–157 1:STN:280:DC%2BD283otFaksQ%3D%3D, 16391933, 10.1007/s00572-005-0031-8

    PubMed  CAS  Google Scholar 

  87. Gai J P, Feng G, Cai X B, et al. A preliminary survey of the arbuscular mycorrhizal status of grassland plants in southern Tibet. Mycorrhiza, 2006, 16:191–196 1:STN:280:DC%2BD28zosF2rtw%3D%3D, 16397804, 10.1007/s00572-005-0032-7

    PubMed  CAS  Google Scholar 

  88. Zhao D D, Li L F, Zhao Z W. Three new records of arbuscular mycorrhizal fungi in China (in Chinese). Mycosystema, 2006, 25:142–144 1:CAS:528:DC%2BD28XnsFWms7c%3D

    CAS  Google Scholar 

  89. Zhang Q, Yao L J, Yang R Y, et al. Potential allelopathic effects of an invasive species Solidago canadensis on the mycorrhizae of native plant species. Allelopathy J, 2007, 20:71–77 1:CAS:528:DC%2BD2sXpsFaltbc%3D

    CAS  Google Scholar 

  90. Zhao Z W, Xia Y M, Qin X Z, et al. Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, southwest China. Mycorrhiza, 2001, 11:159–162 10.1007/s005720100117

    PubMed  CAS  Google Scholar 

  91. Wang F Y, Liu R J, Lin X G, et al. Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza, 2004, 14:133–137 12827474, 10.1007/s00572-003-0248-3

    PubMed  Google Scholar 

  92. Muthukumar T, Sha L Q, Yang X D, et al. Distribution of roots and arbuscular mycorrhizal associations in tropical forest types of Xishuangbanna, southwest China. Appl Soil Ecol, 2003, 22:241–253 10.1016/S0929-1393(02)00156-7

    Google Scholar 

  93. Muthukumar T, Sha L Q, Yang X D, et al. Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza, 2003, 13:289–297 1:STN:280:DC%2BD3srnsFOhsg%3D%3D, 14655040, 10.1007/s00572-003-0234-9

    PubMed  CAS  Google Scholar 

  94. Shi Z Y, Chen Y L, Liu R J. Arbuscular mycorrhizal fungi of Dipterocarpaceae in Jianfengling Mountain, Hainan Province (in Chinese). Mycosystema, 2003, 22:211–215

    Google Scholar 

  95. Shi Z Y, Chen Y L, Liu R J. Arbuscular mycorrhizal fungi of Dipterocarpaceae in Xishuangbanna, southern Yunnan (in Chinese). Mycosystema, 2003, 22:402–409

    Google Scholar 

  96. Shi Z Y, Chen Y L, Liu R J. Effects of Dipterocarpaceae on arbuscular mycorrhizal fungi. Chin J App Ecol, 2005, 16:341–344

    Google Scholar 

  97. Shi Z Y, Wang F Y, Wei Y L. Study on biodiversity of arbuscular mycorrhizal fungi from Dipterocarpaceae (in Chinese). J Anhui Agri Sci, 2007, 35:4195–4196

    Google Scholar 

  98. Fang H, Damodaran P N, Cao M. Arbuscular mycorrhizal status of plants in a tropical secondary forest of Xishuangbanna, Southwest China (in Chinese). Acta Ecol Sinica, 2006, 26:4179–4185

    Google Scholar 

  99. Fang H, Damodaran P N, Cao M. A preliminary study on arbuscular mycorrhizae for 4 species of Fagaceae in Xiashuangbanna, China (in Chinese). Chin J Ecol, 2007, 26:1393–1396

    Google Scholar 

  100. Zhao Z W. The arbuscular mycorrhizas of pteridophytes in Yunnan, southwest China: Evolutionary interpretations. Mycorrhiza, 2000, 10:145–149 10.1007/s005720000076

    Google Scholar 

  101. Zhang Y, Guo L D, Liu R J. Arbuscular mycorrhizal fungi associated with common pteridophytes in Dujiangyan, southwest China. Mycorrhiza, 2004, 14:25–30 1:CAS:528:DC%2BD2cXjt1egsr8%3D, 14523631, 10.1007/s00572-003-0272-3

    PubMed  CAS  Google Scholar 

  102. Zhang Y, Guo L D, Liu R J. Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant Soil, 2004, 261:257–263 1:CAS:528:DC%2BD2cXlvVeht7k%3D, 10.1023/B:PLSO.0000035572.15098.f6

    CAS  Google Scholar 

  103. Zhao D D, Zhao Z W. Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, southwest China. Appl Soil Ecol, 2007, 37:118–128 10.1016/j.apsoil.2007.06.003

    Google Scholar 

  104. Wang K, Zhao Z W. Arbuscular mycorrhizal status of wetland plants collected from Yunnan (in Chinese). Acta Bot Yunnanica, 2006, 28:349–351

    Google Scholar 

  105. Wang K, Zhao Z W. Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in southwest China. Intern Rev Hydrobiol, 2006, 91:29–37 1:CAS:528:DC%2BD28XivVShsL0%3D, 10.1002/iroh.200510827

    CAS  Google Scholar 

  106. Guo S X, Zhang Y G, Li M, et al. AM fungi diversity in the main tree-peony cultivation areas in China (in Chinese). Biodiv Sci, 2007, 15:425–431 10.1360/biodiv.060253

    Google Scholar 

  107. An Z Q, Shen T, Wang H G. Mycorrhizal fungi in relation to growth and mineral-nutrition of apple seedlings. Sci Hortic, 1993, 54:275–285 1:CAS:528:DyaK3sXmsV2jsrg%3D, 10.1016/0304-4238(93)90106-Z

    CAS  Google Scholar 

  108. Tu S H, Goh T B, Banerjee M R. Vesicular arbuscular mycorrhizaemediated uptake and translocation of P and Zn by wheat in calcareous soil. Pedosphere, 1997, 7:317–324 1:CAS:528:DyaK1cXltleht7k%3D

    CAS  Google Scholar 

  109. Liu R J, Liu Z J. Retrospects of 40 years studies on mycorrhizas and prospects in China. Acta Phytopathol Sinica, 1998, 28:201–208

    Google Scholar 

  110. Li X L, Christie P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 2001, 42:201–207 1:CAS:528:DC%2BD3cXmvFymtL4%3D, 11237299, 10.1016/S0045-6535(00)00126-0

    PubMed  CAS  Google Scholar 

  111. Yao Q, Li X L, Christie P. Factors affecting arbuscular mycorrhizal dependency of wheat genotypes with different phosphorus efficiencies. J Plant Nutr, 2001, 24:1409–1419 1:CAS:528:DC%2BD3MXnt12hu7s%3D, 10.1081/PLN-100106991

    CAS  Google Scholar 

  112. Yao Q, Li X L, Feng G, et al. Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant Soil, 2001, 230:279–285 1:CAS:528:DC%2BD3MXjt12qs7Y%3D, 10.1023/A:1010367501363

    CAS  Google Scholar 

  113. Yao Q, Zhu H H, Hu Y L, et al. Differential influence of native and introduced arbuscular mycorrhizal fungi on growth of dominant and subordinate plants. Plant Ecol, 2008, 196:261–268 10.1007/s11258-007-9350-5

    Google Scholar 

  114. Chen B D, Christie P, Li X L. A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere, 2001, 42:185–192 1:CAS:528:DC%2BD3cXmvFymt7Y%3D, 11237297, 10.1016/S0045-6535(00)00124-7

    PubMed  CAS  Google Scholar 

  115. Chen B D, Li X L, Christie P. Two arbuscular mycorrhizal fungi colonizing maize under different phosphorus regimes in a compartment cultivation system. Pedosphere, 2002, 12:121–130

    Google Scholar 

  116. Chen B D, Li X L, Tao H Q, et al. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere, 2003, 50:839–846 1:CAS:528:DC%2BD38XptlCrs7k%3D, 12688500, 10.1016/S0045-6535(02)00228-X

    PubMed  CAS  Google Scholar 

  117. Chen B D, Tang X Y, Zhu Y G, et al. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: Potential for revegetation. Sci China Ser C-Life Sci, 2005, 48:156–164 1:CAS:528:DC%2BD2MXovVOltLo%3D, 10.1007/BF02889814

    CAS  Google Scholar 

  118. Chen B D, Zhu Y G, Zhang X H, et al. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a fieldcontaminated soil. Environ Sci Pollu Res, 2005, 12:325–331 10.1065/espr2005.06.267, 1:CAS:528:DC%2BD2MXht1amtbzI

    Google Scholar 

  119. Chen L Q, Wang X M, Pei Z D. Study on absorbtion and exploitation to P nourishment in the mycorrhiza of Dendrobium candidum (in Chinese). For Res, 2005, 18:163–168

    Google Scholar 

  120. Chen R R, Yin R, Lin X G, et al. Effect of arbuscular mycorrhizal inoculation on plant growth and phthalic ester degradation in two contaminated soils. Pedosphere, 2005, 15:263–269

    Google Scholar 

  121. Chen X, Tang J J, Zhi G Y, et al. Arbuscular mycorrhizal colonization and phosphorus acquisition of plants: Effects of coexisting plant species. Appl Soil Ecol, 2005, 28:259–269 10.1016/j.apsoil.2004.07.009

    Google Scholar 

  122. Chen B D, Xiao X Y, Zhu Y G, et al. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ, 2007, 379:226–234 1:CAS:528:DC%2BD2sXlsFKgsLw%3D, 17157359, 10.1016/j.scitotenv.2006.07.038

    PubMed  CAS  Google Scholar 

  123. Chen B D, Zhu Y G, Duan J, et al. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollu, 2007, 147:374–380 1:CAS:528:DC%2BD2sXjvFGqs78%3D, 10.1016/j.envpol.2006.04.027

    CAS  Google Scholar 

  124. Chen Y, Yuan J G, Yang Z Y, et al. Associations between arbuscular mycorrhizal fungi and Rhynchrelyrum repens in abandoned quarries in southern China. Plant Soil, 2008, 304:257–266 1:CAS:528:DC%2BD1cXitVaqsb0%3D, 10.1007/s11104-008-9546-z

    CAS  Google Scholar 

  125. Bi Y L, Li X L, Christie P. Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere, 2003, 50:831–837 1:CAS:528:DC%2BD38XptlCrs7g%3D, 12688499, 10.1016/S0045-6535(02)00227-8

    PubMed  CAS  Google Scholar 

  126. Bi Y L, Li X L, Christie P, et al. Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere, 2003, 50:863–869 1:CAS:528:DC%2BD38XptlCku70%3D, 12688503, 10.1016/S0045-6535(02)00231-X

    PubMed  CAS  Google Scholar 

  127. Liu R J, Wang F Y. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 2003, 13:123–127 1:CAS:528:DC%2BD3sXitlKgs7c%3D, 12687445, 10.1007/s00572-002-0207-4

    PubMed  CAS  Google Scholar 

  128. Tian C Y, Feng G, Li X L, et al. Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol, 2004, 26:143–148 10.1016/j.apsoil.2003.10.010

    Google Scholar 

  129. Wu S C, Cao Z H, Li Z G, et al. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma, 2005, 125:155–166 10.1016/j.geoderma.2004.07.003

    Google Scholar 

  130. Wu Q S, Xia R X, Zou Y N. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Euro J Soil Biol, 2008, 44:122–128 10.1016/j.ejsobi.2007.10.001

    Google Scholar 

  131. Guo T, Zhang J L, Christie P, et al. Effects of arbuscular mycorrhizal fungi and ammonium: Nitrate ratios on growth and pungency of onion seedlings. J Plant Nutr, 2006, 29:1047–1059 1:CAS:528:DC%2BD28XmsFyrt7o%3D, 10.1080/01904160600689175

    CAS  Google Scholar 

  132. Guo T, Zhang J L, Christie P, et al. Influence of nitrogen and sulfur fertilizers and inoculation with arbuscular mycorrhizal fungi on yield and pungency of spring onion. J Plant Nutr, 2006, 29:1767–1778 1:CAS:528:DC%2BD28XhtFemu7zO, 10.1080/01904160600897497

    CAS  Google Scholar 

  133. Sheng H, Christie P, Li X L. Uptake of Zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environ Geochem Hlth, 2006, 28:111–119 10.1007/s10653-005-9020-2, 1:CAS:528:DC%2BD28Xkt1Kitbw%3D

    Google Scholar 

  134. Liu J N, Wu L J, Wei S L, et al. Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul, 2007, 52:29–39 1:CAS:528:DC%2BD2sXmsV2itLw%3D, 10.1007/s10725-007-9174-2

    CAS  Google Scholar 

  135. Bai J F, Lin X G, Yin R, et al. The influence of arbuscular Mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl Soil Ecol, 2008, 38, 137–145 10.1016/j.apsoil.2007.10.002

    Google Scholar 

  136. Lin X G, Wang S G, Shi Y Q. Tolerance of VA mycorrhizal fungi to soil acidity. Pedosphere, 2001, 11:105–113

    Google Scholar 

  137. Feng G, Song Y C, Li X L, et al. Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover on a calcareous soil. Appl Soil Ecol, 2003, 22:139–148 10.1016/S0929-1393(02)00133-6

    Google Scholar 

  138. Feng G, Zhang F S, Li X L, et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 2002, 12:185–190 1:CAS:528:DC%2BD38Xmt1WisLw%3D, 12189473, 10.1007/s00572-002-0170-0

    PubMed  CAS  Google Scholar 

  139. Feng G, Zhang F S, Li X L, et al. Do arbuscular mycorrhizal fungi affect nitrogen cycling in soil? Commu Soil Sci Plant Anal, 2002, 33:3825–3836 1:CAS:528:DC%2BD3sXjslCm, 10.1081/CSS-120015925

    CAS  Google Scholar 

  140. Song Y C, Li X L, Christie P. Uptake of organic phosphorus by arbuscular mycorrhizal red clover. Pedosphere, 2002, 12:101–110

    Google Scholar 

  141. Zhu Y G, Miller M. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci, 2003, 8:407–409 1:CAS:528:DC%2BD3sXnt1alsLs%3D, 13678905, 10.1016/S1360-1385(03)00184-5

    PubMed  CAS  Google Scholar 

  142. Yao Q, Li X L, Ai W D, et al. Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links. Euro J Soil Biol, 2003, 39:47–54 1:CAS:528:DC%2BD3sXis12ru7s%3D, 10.1016/S1164-5563(02)00008-0

    CAS  Google Scholar 

  143. Guo T, Zhang J L, Christie P, et al. Effects of arbuscular mycorrhizal fungi and ammonium: Nitrate ratios on growth and pungency of onion seedlings. J Plant Nutr, 2006, 29:1047–1059 1:CAS:528:DC%2BD28XmsFyrt7o%3D, 10.1080/01904160600689175

    CAS  Google Scholar 

  144. Guo T, Zhang J L, Christie P, et al. Influence of nitrogen and sulfur fertilizers and inoculation with arbuscular mycorrhizal fungi on yield and pungency of spring onion. J Plant Nutr, 2006, 29:1767–1778 1:CAS:528:DC%2BD28XhtFemu7zO, 10.1080/01904160600897497

    CAS  Google Scholar 

  145. Guo T, Zhang J L, Christie P, et al. Pungency of spring onion as affected by inoculation with arbuscular mycorrhizal fungi and sulfur supply. J Plant Nutr, 2007, 30:1023–1034 1:CAS:528:DC%2BD2sXotVKqsbs%3D, 10.1080/01904160701394311

    CAS  Google Scholar 

  146. Jiang L, Li Z M, Huang J G, et al. Influences of arbuscular mycorrhizal fungi on growth and selected physiological indices of tobacco seedlings (in Chinese). Plant Nutr Fert Sci, 2008, 14:156–161 1:CAS:528:DC%2BD1MXks1Kgt7w%3D

    CAS  Google Scholar 

  147. Liu J F, Xia R X, Wang M Y, et al. Effects of inoculation with arbuscular mycorrhizal fungi on AlPO4 uptake by Poncirus trifoliate (in Chinese). Chin J App Ecol, 2008, 19:2155–2160 1:CAS:528:DC%2BD1cXhsVOqs7rP

    CAS  Google Scholar 

  148. Shi W Q, Wang G A, Zhang J L, et al. Effects of inoculation of arbuscular mycorrhizal fungi on δ13C value and gas exchange parameters of Leymus chinensis (in Chinese). Plant Nutr Fert Sci, 2008, 14:570–575 1:CAS:528:DC%2BD1MXotVantr0%3D

    CAS  Google Scholar 

  149. Chang F P, Young C C. Ecology of vesicular-arbuscular mycorrhizal fungi in tea garden soils (in Chinese). Taiwan Tea Res Bull, 1992, 11:63–77

    Google Scholar 

  150. Chang F P, Young C C. Effects of VA mycorrhizal fungi and phosphorus-solubilizing bacteria inoculated on growth of tea cuttings in plastic bag (in Chinese). Taiwan Tea Res Bull, 1992, 11:79–89

    Google Scholar 

  151. Cheng Y H, Chuang M F. Application of VA mycorrhizal fungi on fruit vegetable production. Sust Agri, 1997, 6:28–31

    Google Scholar 

  152. Li X C. Impact of arbuscular vesicular mycorrhizal fungi on production of Ginseng (in Chinese). J Chin Med Mat, 2003, 26:475–476

    Google Scholar 

  153. Li X C. Effects of infecting vesicular-arbuscular mycorrhiza on growth and development of Coix lachryma-jobi L. (in Chinese). J Shanxi Agri Univ (Nat Sci Ed), 2003, 23:90–93 1:CAS:528:DC%2BD2cXhs1entL0%3D

    CAS  Google Scholar 

  154. Li M, Liu R J, Christie P, et al. Influence of three arbuscular mycorrhizal fungi and phosphorus on growth and nutrient status of taro. Commu Soil Sci Plant Anal, 2005, 36:2383–2396 1:CAS:528:DC%2BD2MXht1agtrfE, 10.1080/00103620500253134

    CAS  Google Scholar 

  155. Liu J F, Zhang Y, Xie LY, et al. Effects of arbuscular mycorrhizal fungi on the growth and development of Macadamia plantlets (in Chinese). Chin J Trop Crops, 2005, 26:16–19

    Google Scholar 

  156. Gai J P, Feng G, Christie P, et al. Screening of arbuscular mycorrhizal fungi for symbiotic efficiency with sweet potato. J Plant Nutr, 2006, 29:1085–1094 1:CAS:528:DC%2BD28XmsFyrt7k%3D, 10.1080/01904160600689225

    CAS  Google Scholar 

  157. Ren J H, Liu R X, Li Y L. Study on arbuscular mycorrhizae of Panax notoginseng (in Chinese). Microbiology (Beijing), 2007, 34:224–227

    Google Scholar 

  158. Sun Y, Li X L, Feng G. Effect of arbuscular mycorrhizal colonization on ecological functional traits of ephemerals in the Gurbantonggut desert. Symbiosis, 2008, 46:121–127 1:CAS:528:DC%2BD1cXpt1Cqurg%3D

    CAS  Google Scholar 

  159. Wang C X, Li X L, Zhou J C, et al. Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commu Soil Sci Plant Anal, 2008, 39:499–509 10.1080/00103620701826738, 1:CAS:528:DC%2BD1cXhs1Wmu7o%3D

    Google Scholar 

  160. Tian C J, He X Y, Zhong Y, et al. Effects of VA mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. For Ecol Manag, 2002, 170:307–312 10.1016/S0378-1127(01)00781-2

    Google Scholar 

  161. Yen C H, Chou M C. Effects of nodules and mycorrhiza on the N-fixation of Casuarina equisetifolia with different nutrient treatments (in Chinese). Taiwan J For Sci, 2006, 21:523–530 1:CAS:528:DC%2BD2sXitFSgur8%3D

    CAS  Google Scholar 

  162. Yan M, Zhong Z C. Effects of aluminum stress on photosynthesis of Cinnamomum camphora seedlings inoculated with AMF (in Chinese). Acta Bot Bor-Occid Sinica, 2008, 28:1816–1822 1:CAS:528:DC%2BD1MXhtVamsrfO

    CAS  Google Scholar 

  163. Wu T H, Hao W Y, Lin X G, et al. Screening of arbuscular mycorrhizal fungi for the revegetation of eroded red soils in subtropical China. Plant Soil, 2002, 239:225–235 1:CAS:528:DC%2BD38XktFWisbY%3D, 10.1023/A:1015078207757

    CAS  Google Scholar 

  164. Yao Q, Zhu H H, Chen J Z. Growth responses and endogenous IAA and IPAS changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation. Sci Hortic, 2005, 105:145–151 1:CAS:528:DC%2BD2MXjt1Squrc%3D, 10.1016/j.scienta.2005.01.003

    CAS  Google Scholar 

  165. Yao Q, Li X L, Feng G, et al. Influence of extramatrical hyphae on mycorrhizal dependency of wheat genotypes. Commu Soil Sci Plant Anal, 2001c, 32:3307–3317 1:CAS:528:DC%2BD38XhtFOhug%3D%3D, 10.1081/CSS-120001122

    CAS  Google Scholar 

  166. Liu R J, Luo X S. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi. New Phytol, 1994, 128:89–92 10.1111/j.1469-8137.1994.tb03990.x

    Google Scholar 

  167. Liu R J, Diao Z K, Li J X, et al. The relationship between colonization potential and inoculum potential of arbucular mycorrhizal fungi. Mycosystema, 2006, 25:408–415

    Google Scholar 

  168. Liao J P, Lin X G, Cao Z H, et al. Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere, 2003, 50:847–853 1:CAS:528:DC%2BD38XptlCku78%3D, 12688501, 10.1016/S0045-6535(02)00229-1

    PubMed  CAS  Google Scholar 

  169. Chen B D, Liu Y, Shen H, et al. Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza, 2004, 14:347–354 1:CAS:528:DC%2BD2cXhtVKrtbnJ, 14661105, 10.1007/s00572-003-0281-2

    PubMed  CAS  Google Scholar 

  170. Chen B D, Shen H, Li X L, et al. Effects of EDTA application and arbscular myorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil, 2004, 261:219–229 1:CAS:528:DC%2BD2cXlvVehtbw%3D, 10.1023/B:PLSO.0000035538.09222.ff

    CAS  Google Scholar 

  171. Chen B D, Jakobsen I, Roos P, et al. Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil, 2005, 275:349–359 1:CAS:528:DC%2BD2MXht1enurbL, 10.1007/s11104-005-2888-x

    CAS  Google Scholar 

  172. Chen X, Wu C H, Tang J J, et al. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere, 2005, 60:665–671 1:CAS:528:DC%2BD2MXltlajsLo%3D, 15963805, 10.1016/j.chemosphere.2005.01.029

    PubMed  CAS  Google Scholar 

  173. Chen B D, Zhu Y G, Smith F A. Effects of the mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere, 2006, 62:1464–1473 1:CAS:528:DC%2BD28XhvVeiur8%3D, 16084565, 10.1016/j.chemosphere.2005.06.008

    PubMed  CAS  Google Scholar 

  174. Christie P, Li X L, Chen B D. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil, 2004, 261:209–217 1:CAS:528:DC%2BD2cXlvVehtb4%3D, 10.1023/B:PLSO.0000035542.79345.1b

    CAS  Google Scholar 

  175. Huang Y, Tao S. Excessive Cu and Zn affecting on distribution of the metals and activities of glycolytic and nitrogen incorporating key enzymes in mycelia of ectomycorrhizal fungi Suillus bovines. J Environ Sci-China, 2001, 13:337–341 1:STN:280:DC%2BD3MrktlSluw%3D%3D, 11590767

    PubMed  CAS  Google Scholar 

  176. Huang Y, Tao S. Influences of excessive Cu on photosynthesis and growth in ectomycorrhizal Pinus sylvestris seedlings. J Environ Sci-China, 2004, 16:414–419 1:CAS:528:DC%2BD2cXms1ynsLs%3D, 15272714

    PubMed  CAS  Google Scholar 

  177. Huang Y, Tao S, Chen Y J. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J Environ Sci-China, 2005, 17:276–280 1:CAS:528:DC%2BD2MXjtFagsbo%3D, 16295905

    PubMed  CAS  Google Scholar 

  178. Liu Y, Zhu Y G, Chen B D, et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza, 2005, 15:187–192 1:STN:280:DC%2BD2M3ksFWjsQ%3D%3D, 15309589, 10.1007/s00572-004-0320-7

    PubMed  CAS  Google Scholar 

  179. Liu Y, Zhu Y G, Chen B D, et al. Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environ Intern, 2005, 31:867–873 1:STN:280:DC%2BD2Mzot1Snsw%3D%3D, 10.1016/j.envint.2005.05.041

    CAS  Google Scholar 

  180. Wang F Y, Lin X G, Yin R. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil, 2005, 269:225–232 1:CAS:528:DC%2BD2MXks1Ojurg%3D, 10.1007/s11104-004-0517-8

    CAS  Google Scholar 

  181. Wang F Y, Lin X G, Yin R. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens—a field case. Environ Pollu, 2007, 147:248–255 1:CAS:528:DC%2BD2sXisVWnu74%3D, 10.1016/j.envpol.2006.08.005

    CAS  Google Scholar 

  182. Wang F Y, Lin X G, Yin R. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Intern J Phytoremed, 2007, 9:345–353 10.1080/15226510701476214, 1:CAS:528:DC%2BD2sXos12jtrk%3D

    Google Scholar 

  183. Wang F Y, Lin X G, Yin R. Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia, 2007, 51:99–109 1:CAS:528:DC%2BD2sXpsFWrsbY%3D, 10.1016/j.pedobi.2007.02.003

    CAS  Google Scholar 

  184. Zhang X H, Zhu Y G, Chen B D, et al. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr, 2005, 28:2065–2077 1:CAS:528:DC%2BD2MXhtlanu7fI, 10.1080/01904160500320871

    CAS  Google Scholar 

  185. Zhang X H, Lin A J, Chen B D, et al. Effects of Glomus mosseae on the toxicity of heavy metals to Vicia faba. J Environ Sci-China, 2007, 18:721–726

    Google Scholar 

  186. Leung H M, Ye Z H, Wong M H. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollu, 2006, 139:1–8 1:CAS:528:DC%2BD2MXht1Wisr7E, 10.1016/j.envpol.2005.05.009

    CAS  Google Scholar 

  187. Leung H M, Ye Z H, Wong M H. Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere, 2007, 66:905–915 1:CAS:528:DC%2BD28Xht1CqtLzK, 16872660, 10.1016/j.chemosphere.2006.06.037

    PubMed  CAS  Google Scholar 

  188. Wong C C, Wu S C, Kuek C, et al. The role of mycorrhizae associated with vetiver grown in Pb-/Zn-contaminated soils: Greenhouse study. Restoration Ecology, 2007, 15:60–67 10.1111/j.1526-100X.2006.00190.x

    Google Scholar 

  189. Wu F Y, Ye Z H, Wu S C, et al. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta, 2007, 226:1363–1378 1:CAS:528:DC%2BD2sXhtFGgsLnF, 17624548, 10.1007/s00425-007-0575-2

    PubMed  CAS  Google Scholar 

  190. Xia Y S, Cheng B D, Christie P, et al. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. J Environ Sci-China, 2007, 19:1245–1251 1:CAS:528:DC%2BD2sXhtlWjs7fP, 18062425

    PubMed  CAS  Google Scholar 

  191. Xiao Y P, Li T, Fei H Y, et al. Species diversity of arbuscular mycorrizal fungi in Jinding Pb-Zn mining area of Lanping, Yunnan (in Chinese). Mycosystema, 2008, 27:652–662

    Google Scholar 

  192. Lin A J, Zhang X H, Wong M H, et al. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Hlth, 2007, 29:473–481 1:CAS:528:DC%2BD2sXhtFyqs77N, 10.1007/s10653-007-9116-y

    CAS  Google Scholar 

  193. Chen X H, Zhao B. Arbuscular mycorrhizal fungi mediated uptake of lanthanum in Chinese milk vetch (Astragalus sinicus L). Chemosphere, 2007, 68:1548–1555 1:CAS:528:DC%2BD2sXmtFKqsbk%3D, 17475308, 10.1016/j.chemosphere.2007.02.068

    PubMed  CAS  Google Scholar 

  194. Yu X Z, Cheng J M, Wong M H. Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem, 2005, 37:195–201 1:CAS:528:DC%2BD2cXhtVahu77O, 10.1016/j.soilbio.2004.07.029

    CAS  Google Scholar 

  195. Ma Y, Dicknson N M, Wong M H. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biol Biochem, 2006, 38:1403–1412 1:CAS:528:DC%2BD28XksVOnsLk%3D, 10.1016/j.soilbio.2005.10.016

    CAS  Google Scholar 

  196. Jumpponen A. Dark septate endophytes—are they mycorrhizal? Mycorrhiza, 2001, 11:207–211 10.1007/s005720100112

    Google Scholar 

  197. Zhang Y J, Zhang Y, Liu M J, et al. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol, 2008, 46:624–632 19107390, 10.1007/s12275-008-0163-6

    PubMed  Google Scholar 

  198. Zhang X X, Cheng S P, Zhu C J, et al. Microbial PAH-degradation in soil: Degradation pathways and contributing factors. Pedosphere, 2006, 16:555–565 1:CAS:528:DC%2BD28XhtFekt73F, 10.1016/S1002-0160(06)60088-X

    CAS  Google Scholar 

  199. Li Q L, Ling W T, Gao Y Z, et al. Effects of arbuscular mycorrhizae on degradation of polycyclic aromatic hydrocarbons (PAHs) in soils (in Chinese). J Agro-Environ Sci, 2008, 27:1705–1710 1:CAS:528:DC%2BD1MXhtVGlurvK

    CAS  Google Scholar 

  200. Cheng Z X, Ling W T, Gao Y Z, et al. Impacts of arbuscular mycorrhizae on plant uptake and phytoremediation of pyrene in soils (in Chinese). Plant Nutr Fert Sci, 2008, 14:1178–1185 1:CAS:528:DC%2BD1MXhtVyqurjF

    CAS  Google Scholar 

  201. Teng Y, Luo Y M, Gao J, et al. Combined remediation effects of arbuscular mycorrhizal fungi-legumes-rhizobium symbiosis on PCBs contaminated soils (in Chinese). Chin J Environ Sci, 2008, 29:2925–2930 1:CAS:528:DC%2BD1cXhsFSmsr%2FM

    CAS  Google Scholar 

  202. Xu L, Teng Y, Zhang X L, et al. Combined remediation of PCBs polluted soil by plant and microorganism in a field trial (in Chinese). Chin Environ Sci, 2008, 28:646–650 1:CAS:528:DC%2BD1cXhtVSksLjL

    CAS  Google Scholar 

  203. Huang H L, Zhang S Z, Chen B D, et al. Uptake of atrazine and cadmium from soil by maize (Zea mays L.) in association with the arbuscular mycorrhizal fungus Glomus etunicatum. J Agri Food Chem, 2006, 54:9377–9382 1:CAS:528:DC%2BD28XhtFKhur7K, 10.1021/jf061699g

    CAS  Google Scholar 

  204. Huang H L, Zhang S Z, Shan X Q, et al. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environ Pollu, 2007, 146:452–457 1:CAS:528:DC%2BD2sXit12gsLg%3D, 10.1016/j.envpol.2006.07.001

    CAS  Google Scholar 

  205. Cheung K C, Zhang J Y, Deng H H, et al. Interaction of higher plant (jute), electrofused bacteria and mycorrhiza on anthracene biodegradation. Biores Tech, 2008, 99:2148–2155 1:CAS:528:DC%2BD1cXhvFOqu70%3D, 10.1016/j.biortech.2007.05.037

    CAS  Google Scholar 

  206. Wu N Y, Zhang S Z, Huang H L, et al. Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment. Sci Total Environ, 2008, 394:230–236 1:CAS:528:DC%2BD1cXjs1altbY%3D, 18313725, 10.1016/j.scitotenv.2008.02.003

    PubMed  CAS  Google Scholar 

  207. Wu N Y, Zhang S Z, Huang H L, et al. DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environ Pollu, 2008, 151:569–575 1:CAS:528:DC%2BD1cXhslaqtrw%3D, 10.1016/j.envpol.2007.04.005

    CAS  Google Scholar 

  208. Wang S G, Lin X G, Yin R, et al. Effect of inoculation with arbuscular mycorrhizal fungi on the degradation of DEHP in soil. J Environ Sci-China, 2004, 16:458–461 1:CAS:528:DC%2BD2cXms1yntr4%3D, 15272723

    PubMed  CAS  Google Scholar 

  209. Wang S G, Lin X G, Yin R, et al. Effect of di-n-butyl phthalate on mycorrhizal and non-mycorrhizal cowpea plants. Biol Plant, 2004, 47:637–639 10.1023/B:BIOP.0000041080.85525.bc

    Google Scholar 

  210. Zhang X H, Zhu Y G, Lin A J, et al. Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere, 2006, 62:1627–1632 10.1016/j.chemosphere.2006.01.034, 1:CAS:528:DC%2BD28Xntlyrsr4%3D

    Google Scholar 

  211. Wang F Y, Lin X G, Yin R, et al. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Appl Soil Ecol, 2006, 31:110–119 10.1016/j.apsoil.2005.03.002

    Google Scholar 

  212. Song Y C, Li X L, Feng G, et al. Rapid assessment of acid phosphatase activity in the mycorrhizosphere and in arbuscualr mycorrhizal fungal hyphae. Chin Sci Bull, 2000, 45:1187–1190 1:CAS:528:DC%2BD3cXls12itLg%3D, 10.1007/BF02886076

    CAS  Google Scholar 

  213. Wang M Y, Xia R X, Wu Q S, et al. Influence of arbuscular mycorrhizal fungi on microbes and enzymes of soils from different cultivated densities of red clover. Ann Microbiol, 2007, 57:1–7 1:CAS:528:DC%2BD2sXkvFylt7c%3D, 10.1007/BF03175345

    CAS  Google Scholar 

  214. Tang M, Chen H. Effects of arbuscular mycorrhizal fungi alkaline phosphatase activities on Hippophae rhamnoides drought-resistance under water stress conditions. Trees, 1999, 14:113–115

    Google Scholar 

  215. Liu R J. Effect of vesicular-arbuscular mycorrhizal fungi on verticillium wilt of cotton. Mycorrhiza, 1995, 5:293–297

    Google Scholar 

  216. Liu R J, Li M, Meng X X, et al. Effects of AM fungi on endogenous hormones in corn and cotton plants. Mycosystema, 2000, 19:91–96

    Google Scholar 

  217. Zhu H H, Yao Q. Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol, 2004, 152:537–542 1:CAS:528:DC%2BD2cXhtVaksb7K, 10.1111/j.1439-0434.2004.00892.x

    CAS  Google Scholar 

  218. Hao Z P, Christie P, Qin L, et al. Control fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhizal fungus. J Plant Nutr, 2005, 28:1961–1974 1:CAS:528:DC%2BD2MXht1emsLzJ, 10.1080/01904160500310997

    CAS  Google Scholar 

  219. Wang C X, Hao Z B. Effects of arbuscular mycorrhizal fungi on fusarium wilt of cucumber seedlings (in Chinese). Mycosystema, 2008, 27:395–404

    Google Scholar 

  220. Feng G, Su Y B, Li X L, et al. Histochemical visualization of phosphatase released by arbuscular mycorrhizal fungi in soil. J Plant Nutr, 2002, 25:969–980 1:CAS:528:DC%2BD38XksFKisL0%3D, 10.1081/PLN-120003932

    CAS  Google Scholar 

  221. Yu Y G, Zhao B. The interaction and effect of two species of arbuscular mycorrhizal fungi on the growth of Astragalus sinicus L. at different pH level (in Chinese). Mycosystema, 2008, 27:209–216 1:CAS:528:DC%2BD1MXlvFCnsrw%3D

    CAS  Google Scholar 

  222. Zhu H H, Yao Q, Sun X T, et al. Colonization, ALP activity and plant growth promotion of native and exotic arbuscular mycorrhizal fungi at low pH. Soil Biol Biochem, 2007, 39:942–950 1:CAS:528:DC%2BD2sXhtlSqsr8%3D, 10.1016/j.soilbio.2006.11.006

    CAS  Google Scholar 

  223. Zhao X, Wang Y, Yan X F. Effects of arbuscular mycorrhizal fungi and phosphorus on camptothecin content in Camptotheca acuminata seedlings. Allelopathy J, 2007, 20:51–60

    Google Scholar 

  224. Bi H H, Song Y Y, Zeng R S. Biochemical and molecular responses of host plants to mycorrhizal infection and their roles in plant defence. Allelopathy J, 2007, 20:15–27

    Google Scholar 

  225. Yao Q, Zhu H H, Zeng R S. Role of phenolic compounds in plant defence: Induced by arbuscular mycorrhizal fungi. Allelopathy J, 2007, 20:1–13

    Google Scholar 

  226. Yuan Z L, Dai C C, Chen L Q. Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotech, 2007, 6:1266–1271 1:CAS:528:DC%2BD2sXot1ars7g%3D

    CAS  Google Scholar 

  227. Dong X L, Zhao B. Arbuscular mycorrhizal formation of crucifer leaf mustard induced by flavonoids apigenin and daidzein. Chin Sci Bull, 2004, 49:1254–1261 1:CAS:528:DC%2BD2cXmtl2msrk%3D, 10.1360/04wc0072

    CAS  Google Scholar 

  228. Dong X L, Zhao B. Nested multiplex PCR—a feasible technique to study partial community of arbuscular mycorrhizal fungi in field-growing plant root. Sci China Ser C-Life Sci, 2006, 49:354–361 1:CAS:528:DC%2BD28XhtVGitr3P, 10.1007/s11427-006-2008-z

    CAS  Google Scholar 

  229. Farmer M J, Li X, Feng G, et al. Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol, 2007, 35:599–609 10.1016/j.apsoil.2006.09.012

    Google Scholar 

  230. Yen C H, Wu Y T, Wang Y Z. Detection of Taiwania mycorrhizal fungi with Nested PCR (in Chinese). Taiwan J For Res, 2006, 21:409–420 1:CAS:528:DC%2BD2sXitFSgtbk%3D

    CAS  Google Scholar 

  231. Cai B Y, Jie W G, Ge J P, et al. Molecular detection of the arbuscular mycorrhizal fungi in the rhizosphere of Phellodendron amurense (in Chinese). Mycosystema, 2008, 27:884–893 1:CAS:528:DC%2BD1MXhtFWms7rI

    CAS  Google Scholar 

  232. Chen A Q, Hu J, Sun S B, et al. Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol, 2007, 173:817–831 1:CAS:528:DC%2BD2sXjvFGgtrw%3D, 17286830, 10.1111/j.1469-8137.2006.01962.x

    PubMed  CAS  Google Scholar 

  233. Long L K, Yang S Z, Yao Q, et al. DNA extraction from arbuscular mycorrhizal fungi and analysis by PCR-denaturing gradient cell electrophoresis (in Chinese). Mycosystema, 2005, 24:564–569 1:CAS:528:DC%2BD28Xisl2msrk%3D

    CAS  Google Scholar 

  234. Long L K, Yao Q, Yang S Z, et al. Identification of an arbuscular mycorrhizal fungi by the methods of morphology and molecule (in Chinese). J South Chin Agr Univ, 2006, 27:40–42 1:CAS:528:DC%2BD2sXntF2isw%3D%3D

    CAS  Google Scholar 

  235. Ge L, Sun S B, Chen A Q, et al. Tomato sugar transporter genes associated with mycorrhiza and phosphate. Plant Growth Regul, 2008, 55:115–123 1:CAS:528:DC%2BD1cXlsFCmsbs%3D, 10.1007/s10725-008-9266-7

    CAS  Google Scholar 

  236. Li H Y, Yang G D, Shu H R, et al. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.): Which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol, 2006, 47:154–163 1:CAS:528:DC%2BD28Xht12ksbs%3D, 16326755, 10.1093/pcp/pci231

    PubMed  CAS  Google Scholar 

  237. Li H Y, Liu R J, Shu H R, et al. Chib1 and PAL5 directly involved in the defense responses induced by the arbuscular mycorrhizal fungus Glomus fasciculatus against nematode. Mycosystema, 2005, 24:385–393 1:CAS:528:DC%2BD28XhtVOku7k%3D

    CAS  Google Scholar 

  238. Bi Y L, Li X L, Wang H G, et al. Establishment of monoxenic culture between the arbuscular mycorrhizal fungus Glomus sinuosum and Ri-DNA-transfromed carrot roots. Plant Soil, 2004, 261:239–244 1:CAS:528:DC%2BD2cXlvVehtbs%3D, 10.1023/B:PLSO.0000035537.16639.7b

    CAS  Google Scholar 

  239. Wang H F, Li S Y, Bei K Z, et al. Influences of double CO2 concentration on plant root surface area and viability and infection intensity of vesicular-arbuscular mycorrhiza1 fungi. Chin Sci Bull, 1998, 43:2083–2084

    Google Scholar 

  240. Wang S G, Feng Z Z, Wang X K, et al. Effects of eleveated atmospheric O3 on arbuscular mycorrhizal (AM) and its function (in Chinese). Environ Sci, 2006, 27:1872–1877

    Google Scholar 

  241. Yuan X X, Lin X G, Zhang H Y, et al. Effect of elevated atmospheric CO2 on arbuscular mycorrhizal diversity in paddy-wheat field (in Chinese). Soils (Nanjing), 2005, 37:659–662 1:CAS:528:DC%2BD28XhtFejs77K

    CAS  Google Scholar 

  242. Yang R Y, Tang J J, Chen X, et al. The effects of elevated atmospheric CO2 on AMF community colonized in roots of various plant species (in Chinese). Acta Ecol Sinica, 2006, 21:54–60

    Google Scholar 

  243. Yuan X X, Lin X G, Chu H Y, et al. Effects of doubled CO2 on AM fungi and inoculation effects on green gram (Phaseolus radiatus L.) (in Chinese). J Agro-Environ Sci, 2007, 26:211–215 1:CAS:528:DC%2BD1cXjsFKhs7k%3D

    CAS  Google Scholar 

  244. Jin L, Gu Y J, Xiao M, et al. The history of Solidago canadensis invasion and the development of its mycorrhizal associations in newly-reclaimed land. Funct Plant Biol, 2004, 31:979–986 10.1071/FP04061

    Google Scholar 

  245. Yang R Y, Tang J J, Yang Y S, et al. Invasive and non-invasive plants differ in response to soil heavy metal lead contamination. Bot Stud, 2007, 48:453–458 1:CAS:528:DC%2BD2sXhsVyhurfP

    CAS  Google Scholar 

  246. Yang R Y, Yu G D, Tang J J, et al. Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.). J Environ Sci-China, 2008, 20:739–744 1:CAS:528:DC%2BD1cXosFGlu70%3D, 18763570

    PubMed  CAS  Google Scholar 

  247. Niu H B, Liu W X, Wan F H, et al. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil, 2007, 294:73–85 1:CAS:528:DC%2BD2sXltlarurk%3D, 10.1007/s11104-007-9230-8

    CAS  Google Scholar 

  248. Lin T C, Wu C G. Vesicular-arbuscular mycorrhizal fungi (VAMF) symbiotic with pioneer plants at Mountain Jiujiufong after the 921 Earthquakes (in Chinese). Endem Spe Res, 2007, 9:51–62

    Google Scholar 

  249. Huang J C, Tang M, Niu Z C, et al. Arbuscular mycorrhizal fungi in petroleum-contaminated soils in Suining area of Sichuan province (in Chinese). Chin J Ecol, 2007, 26:1389–1392 1:CAS:528:DC%2BD1cXitV2rsbc%3D

    CAS  Google Scholar 

  250. Guo Y J, Han J G. Soil biochemical properties and arbuscular mycorrhizal fungi as affected by afforestation of rangelands in northern China. J Arid Environ, 2008, 72:1690–1697 10.1016/j.jaridenv.2008.04.001

    Google Scholar 

  251. Liu W, Du L F. Interactions between Bt transgenic crops and arbuscular mycorrhizal fungi: A new urgent issue of soil ecology in agroecosystems. Acta Agri Scand Sec B-Soil Plant Sci, 2008, 58:187–192

    Google Scholar 

  252. Castaldini M, Turrini A, Sbrana C, et al. Impact of Bt corn on rhizospheric and on beneficial mycorrhizal symbiosis and soil eubacterial communities iosis in experimental microcosms. Appl Environ Microbiol, 2005, 71:6719–6729 1:CAS:528:DC%2BD2MXht1ekur7N, 16269702, 10.1128/AEM.71.11.6719-6729.2005

    PubMed  CAS  PubMed Central  Google Scholar 

  253. Tang M, Chen H. Relation between the poplar mycorrhizae and canker. Acta Pedol Sinica, 1994, 31:177–181

    Google Scholar 

  254. Tang M, Chen H, Shang H S. Mechanism of vesicular-arbuscular mycorrhizal fungi enhanced resistance of poplar to canker. Sci Sivae Sinicae, 2000, 36:87–92

    Google Scholar 

  255. Zhu H H, Yao Q, Yang S Z. Interactions between AM fungus and antagonistic bacterium and their effects on phenolic content in tomato plant root (in Chinese). J South Chin Agr Univ (Nat Sci Ed), 2003, 24:20–23 1:CAS:528:DC%2BD3sXns1GgsLY%3D

    CAS  Google Scholar 

  256. Qi G H, Zhang L P, Yang W L, et al. Effects of arbuscular mycorrhizal fungi on growth and disease resistance of replanted Ginkgo (Ginkgo biloba L.) seedlings (in Chinese). Hebei J For Orc Res, 2002, 17:58–61

    Google Scholar 

  257. Qi G H, Zhang L P, Yang W L, et al. Effects of arbuscular mycorrhizal fungi on growth and disease resistance of (Diospyros lotus L.) seedlings (in Chinese). Hebei Fruits, 2003, 32:8–9

    Google Scholar 

  258. Li M, Liu R J, Li X L. Influences of arbuscular mycorrhizal fungi on growth and Fusarium-wilt disease of watermelon in the field (in Chinese). Acta Phytopathol Sinica, 2004, 34:472–473

    Google Scholar 

  259. Yu H S, Wu H Z, Wang Z Y, et al. Effects of VA mycorrhizal fungi on growth and wilt of watermelon (in Chinese). Chin Veg, 1997, 17:26–27

    Google Scholar 

  260. Huang J H, Zeng R S, Luo S M. Studies on disease resistance of maize toward sheath blight induced by arbuscular mycorrhizal fungi (in Chinese). Chin J Eco-Agri, 2006, 14:167–169

    Google Scholar 

  261. Chen H, Tang M, Liu XD, et al. Effets of ectomycorrhizal fungi on canker resistance in poplar seedlings (in Chinese). Acta Phytopathol Sinica, 1996, 26:370–371

    Google Scholar 

  262. Wu X Q, Sun M Q, Gao Y, et al. Effects of some ectomycorrhizas on pine seedlings to disease resistance (in Chinese). Sci Silvae Sinicae, 2007, 43:88–93

    Google Scholar 

  263. Dong C J, Zhao B. Interaction between AM fungi and Rhizobium, and effects of flavonoids on it (in Chinese). Chin J Appl Ecol, 2004, 15:1585–1588 1:CAS:528:DC%2BD2MXktlWrtA%3D%3D

    CAS  Google Scholar 

  264. Zheng H Z, Zhang Y T, Cui C N, et al. Effect of mycorrhiza and rhizobium on N and P utilization and vegetative growth of alfalfa (in Chinese). J Anhui Agri Sci, 2006, 34:540–542

    Google Scholar 

  265. Qin F L, Wang J G, Li X L, et al. Effect of VA mycorrhizal fungi and phosphate-solubilizing bacteria on growth and phosphorus uptake of red clover (in Chinese). Acta Pratacul Sinica, 2000, 9:9–14

    Google Scholar 

  266. Cai X M, Zhang Q F, Zheng W W. Effect of VA mycorrhizal fungi and Acetobacter diazotrophicus on the growth of super sweet corn (in Chinese). Fujian J Agri Sci, 2004, 19:156–159

    Google Scholar 

  267. Wang Y, Li Z P. A new species of Tuber from China (in Chinese). Acta Mycol Sinica, 1991, 10:263–265

    Google Scholar 

  268. Zhang B C. Revision of Chinese species of Elaphomyces (Ascomycotina, Elaphomycetales). Mycol Res, 1991, 95:973–985 10.1016/S0953-7562(09)80095-6

    Google Scholar 

  269. Li W H, Qin S Y. Macrofugal resources from Sichuan (in Chinese). Acta Mycol Sinica, 1991, 10:203–207

    Google Scholar 

  270. Mao X L. Distribution patterns of Amanita from Xizang (Tibet) (in Chinese). Acta Mycol Sinica, 1991, 10:288–295

    Google Scholar 

  271. Zang M, Yuan M S, Gong M Q. Notes on and additions to Chinese members of the Boletales (in Chinese). Acta Mycol Sinica, 1993, 12:275–282

    Google Scholar 

  272. Wu X L, Zhong J X, Zou F L, et al. The distribution features of marofungi in Mount Fanjingshan, Guizhou (in Chinese). Mycosystema, 1995b, 14:28–36 1:CAS:528:DyaK28XitFKjtbo%3D

    CAS  Google Scholar 

  273. Zang M. On three interesting fungi from Yunnan and Guizhou, China (in Chinese). Mycosystema, 1995, 14:250–255

    Google Scholar 

  274. Zang M. Taxonomy, mycogeography and ectomycorrhizal association of the boletales from China. I. Family Strobilomycetaceae. Mycosystema, 1997, 16:192–196

    Google Scholar 

  275. Zang M. Taxonomy, mycogeography and ectomycorrhizal association of the boletales from China. II. Family Strobilomycetaceae. Mycosystema, 1997, 16:264–269

    Google Scholar 

  276. Wang X H. Type studies of Lactarius species published from China. Mycologia, 1999, 99:253–268 10.3852/mycologia.99.2.253

    Google Scholar 

  277. Wen H A, Sun S X. Fungal flora of tropical Guangxi, China: Macrofungi. Mycotaxon, 1999, 72:359–369

    Google Scholar 

  278. Xu A S. A taxonomic study of the genus Tuber in Xizang (in Chinese). Acta Mycol Sinica, 1999, 184:361–365

    Google Scholar 

  279. Meng F R, Shao J W. The ecological distribution of ectomycorrhizal fungi in main coniferous forests in northeast China (in Chinese). Mycosystema, 2001, 20:413–419

    Google Scholar 

  280. Yu F Q, Liu P G. Reviews and prospects of the ectomycorrhizal research and application (in Chinese). Acta Ecol Sinica, 2002, 22:2217–2226

    Google Scholar 

  281. Wang Y, He X Y. Tuber huidongense sp. nov. from China. Mycotaxon, 2002, 83:191–194

    Google Scholar 

  282. Wang X H, Liu P G. Notes on several boleti from Yunnan, China. Mycotaxon, 2002b, 84:125–134

    Google Scholar 

  283. Wang Q B, Li T H, Yao Y J. A new species of Boletus from Gansu province, China. Mycotaxon, 2003, 88:439–446

    Google Scholar 

  284. Wang H, Dai L M, Yang B S, et al. Occurrence and culture of mycorrhizal fungi associated with oaks in Dandong region, Liaoning province. Pedosphere, 2005b, 15:232–237 1:CAS:528:DC%2BD2MXlvFyjt74%3D

    CAS  Google Scholar 

  285. He X Y, Li H M, Wang Y. Tuber zhongdianense sp. nov. from China. Mycologia, 2004, 90:213–216

    Google Scholar 

  286. Wang Q B, Yao Y J. Boletus reticuloceps, a new combination for Aureoboletus reticuloceps. Sydowia, 2005, 7:131–136 1:CAS:528:DC%2BD2MXhs12qs70%3D

    CAS  Google Scholar 

  287. Song M S, Cao J Z, Yao Y J. Occurrence of Tuber aestivum in China. Mycotaxon, 2005, 91:75–80

    Google Scholar 

  288. Hu H T, Wang Y. Tuber furfuraceum sp. nov. from Taiwan. Mycotaxon, 2005, 93:155–157

    Google Scholar 

  289. Chen J, Liu P G, Wang Y. Tuber umbilicatum, a new species from China, with a key to the spinose-reticulate spored Tuber species. Mycotaxon, 2005d, 94:1–6

    Google Scholar 

  290. Bau T G, Bulakh Y M, Zhuang Y, et al. Agarics and other macrobascidiomycetes from Ussuri River valley. Mycosystema, 2007, 26:349–368

    Google Scholar 

  291. Chen J, Liu P G. Tuber latisporum sp. nov. and related taxa, based on morphology and DNA sequence data. Mycologia, 2007, 99:475–481 1:CAS:528:DC%2BD2sXhtVOgtLvF, 17883039, 10.3852/mycologia.99.3.475

    PubMed  CAS  Google Scholar 

  292. Jing Y B. Progress on studies of ectomycorrhizal fungi and their ecology in China (in Chinese). J West Chin For Sci, 2007, 36:135–140

    Google Scholar 

  293. Lian B, Dong, Hou W G, et al. Ectomycorrhizal Fungi in Jiangsu Province, China. Pedosphere, 2007, 17:30–35 10.1016/S1002-0160(07)60004-6

    Google Scholar 

  294. Yu F Q, Xu G B, Liu P G. A new and noteworthy species of Hygrophorus from Yunnan, China. Mycotaxon, 2007, 100:169–175

    Google Scholar 

  295. Luan Q S, Jiao F H, Jin R Z, et al. Surveys on habitats of major ectomycorrhizal fungi in Liaoning (in Chinese). Liaoning For Sci Tech, 2008, 35:10–14

    Google Scholar 

  296. Liang Y, Guo L D, Du X J, et al. Spatial structure and diversity of woody plants and ectomycorrhizal fungus sporocarps in a natural subtropical forest. Mycorrhiza, 2007, 17:271–278 17443354, 10.1007/s00572-006-0096-z

    PubMed  Google Scholar 

  297. Liang Y, Guo L D, Ma K P. Spatial pattern of the most common late-stage ectomycorrhizal fungi in a subtropical forest in Dujiangyan, Southwest of China. Acta Bot Sinica, 2004, 46:29–34

    Google Scholar 

  298. Liang Y, Guo L D, Ma K P. Genetic structure of a population of the ectomycorrhizal fungus Russula vinosa in subtropical woodlands in southwest China. Mycorrhiza, 2004, 14:235–240 1:CAS:528:DC%2BD2cXms1Cgu7g%3D, 14663577, 10.1007/s00572-003-0260-7

    PubMed  CAS  Google Scholar 

  299. Liang Y, Guo L D, Ma K P. Population genetic structure of an ectomycorrhizal fungus Amanita manginiana in a subtropical forest over two years. Mycorrhiza, 2005, 15:137–142 15164273, 10.1007/s00572-004-0311-8

    PubMed  Google Scholar 

  300. Huai W X, Guo L D, He W. Genetic diversity of an ectomycorrhizal fungus Tricholoma terreum in a Larix principis-rupprechtii stand assessed using random amplified polymorphic DNA. Mycorrhiza, 2003, 13:265–270 14593520, 10.1007/s00572-003-0227-8

    PubMed  Google Scholar 

  301. Xu J P, Guo H, Yang Z L. Single nucleotide polymorphisms in the ectomycorrhizal mushroom Tricholoma matsutake. Microbiol-SGM, 2007, 153:2002–2012 1:CAS:528:DC%2BD2sXot1Wlt7s%3D, 10.1099/mic.0.2006/005686-0

    CAS  Google Scholar 

  302. Xu J P, Sha T, Li Y C, et al. Recombination and genetic differentiation among natural populations of the ectomycorrhizal mushroom Tricholoma matsutake from southwestern China. Mol Ecol, 2008a, 17:1238–1247 18302686, 10.1111/j.1365-294X.2007.03665.x

    PubMed  Google Scholar 

  303. Chan W K, Griffiths D A. The induction of mycorrhiza in Eucalyptus microcorys and Eucalyptus torelliana grown in Hong Kong. For Ecol Manag, 1991, 43:15–24 10.1016/0378-1127(91)90072-4

    Google Scholar 

  304. Tam P C F. Mycorrhizal associations in Pinus massoniana Lamb and Pinus elliottii Engel inoculated with Pisolithus tinctorius. Mycorrhiza, 1994, 4:255–263 10.1007/BF00206774

    Google Scholar 

  305. Tam P C F, Griffiths D A. Mycorrhizal associations in Hong Kong Fagaceae: VI growth and nutrient-uptake by Castanopsis fissa seedlings inoculated with ectomycorrhizal fungi. Mycorrhiza, 1994, 4:169–172 10.1007/BF00203535

    Google Scholar 

  306. Huang J G, Lapeyrie F. Ability of ectomycorrhizal fungus Laccaria bicolor S238N to increase the growth of Douglas fir seedlings and their phosphorus and potassium uptake. Pedosphere, 1996, 6:217–224 1:CAS:528:DyaK2sXitVOrtL4%3D

    CAS  Google Scholar 

  307. Li D W. The effects of Laccaria proxima and fibrous pulp waste on the growth of nine container-grown conifer seedling species. Mycorrhiza, 1996, 6:137–143 10.1007/s005720050118

    Google Scholar 

  308. Xu D, Dell B, Malajczuk N, et al. Effects of P fertilisation and ectomycorrhizal fungal inoculation on early growth of eucalypt plantations in southern China. Plant Soil, 2001, 233:47–57 1:CAS:528:DC%2BD3MXlsVensbo%3D, 10.1023/A:1010355620452

    CAS  Google Scholar 

  309. Yuan L, Huang J G, Christie P, et al. Influence of potassium supply on growth and uptake of nitrogen, phosphorus and potassium by three ectomycorrhizal fungal isolates in vitro. J Plant Nutr, 2005, 28:271–284 1:CAS:528:DC%2BD2MXit1SktL8%3D, 10.1081/PLN-200047614

    CAS  Google Scholar 

  310. Yuan L, Huang J G, Li X L, et al. Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant Soil, 2004, 262:351–361 1:CAS:528:DC%2BD2cXmtlGgu70%3D, 10.1023/B:PLSO.0000037055.67646.97

    CAS  Google Scholar 

  311. Li Y P, Wang R, Zhou Y L. Extraction and identification of endogenous hormones from Russula delica (in Chinese). Mycosystema, 1988, 7:239–244 1:CAS:528:DyaL1MXksFCiurc%3D

    CAS  Google Scholar 

  312. Qian X N, Hunag Y J, Kottke I. Research on Pisolithus tinctorius-Pinus massoniana mycorrhizae by Electron Energy-loss Spectroscopy (in Chinese). J Xiamen Univ (Nat Sci), 2001, 40:1156–1162

    Google Scholar 

  313. Lun Z M, Li Y H, Xing S T. Induced formation of the artificial Shiro of Tricholoma mastutake. Mycosystema, 2005, 24:267–276 1:CAS:528:DC%2BD2MXht1KqtbjE

    CAS  Google Scholar 

  314. Zhang X Y, Chen M H. Studies on the relation between mycorrhiza of pine and mucilage layer in rhizosphere with electron microscope analysis (in Chinese). J Nanjing For Univ, 1995, 19:1–5

    Google Scholar 

  315. Hua X M. Studies on Mycorrhizas of Forest Trees in China (in Chinese). Beijing: China Science and Technology Press, 1990. 1–323

    Google Scholar 

  316. Hua X M. Forest Mycorrhizal Research (in Chinese). Beijing: China Science and Technology Press, 1995. 1–376

    Google Scholar 

  317. Gong M Q, Xu D P, Zhong C L, et al. Mycorrhizal Fungi Diversity and Applications of Inoculation Technology (Most in English and some in Chinese). In: Proceedings of ACIAR International Workshop on Mycorrhiza. Beijing: China Forestry Publishing House, 2000. 1–196

    Google Scholar 

  318. Brundrett M, Malajczuk N, Gong M Q, et al. Nursery inoculation of eucalyptus seedlings in western Australia and southern China using spores and mycelial inoculum of diverse ectomycorrhizal fungi from different climatic regions. For Ecol Manag, 2005, 209:193–205 10.1016/j.foreco.2005.01.031

    Google Scholar 

  319. Chen Y L, Dell B, Malajczuk N. Effect of Scleroderma spore density and age on mycorrhiza formation and growth of containerized Eucalyptus globulus and E. urophylla seedlings. New For, 2006, 31:453–467

    Google Scholar 

  320. Chen Y L, Kang L H, Dell B. Inoculation of Eucalyptus urophylla with spores of Scleroderma in a nursery in south China: Comparison of field soil and potting. For Ecol Manag, 2006, 222:439–449 10.1016/j.foreco.2005.10.050

    Google Scholar 

  321. Chen Y L, Kang L H, Malajczuk N, et al. Selecting ectomycorrhizal fungi for inoculating plantations in south China: Effect of Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii, and P. radiate. Mycorrhiza, 2006, 16:251–259 16534620, 10.1007/s00572-006-0039-8

    PubMed  Google Scholar 

  322. Chen Y L, Liu S, Dell B. Mycorrhizal status of Eucalyptus plantations in south China and implications for management. Mycorrhiza, 2007d, 17:527–535 17406907, 10.1007/s00572-007-0125-6

    PubMed  Google Scholar 

  323. Sun X, Li Y H, Vaario L M. Formation of mycorrhiza-like structures in cultured root/callus of Cathaya argyrophylla Chun et Kuang infected with the ectomycorrhizal fungus Cenococcum geophilum Fr. J Integ Plant Biol, 2006, 48:1163–1167 10.1111/j.1744-7909.2006.00334.x

    Google Scholar 

  324. Vaario L M, Xing S, Xie Z Q, et al. In situ and in vitro colonization of Cathaya argyrophylla (Pinaceae) by ectomycorrhizal fungi. Mycorrhiza, 2006, 16:137–142 16292663, 10.1007/s00572-005-0026-5

    PubMed  Google Scholar 

  325. Chen Y L, Malajczuk N, Dell B. Effects of ectomycorrhizas and vesicular-arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol, 2000, 146:545–556 10.1046/j.1469-8137.2000.00663.x

    Google Scholar 

  326. Tian C J, He X Y, Zhong Y, et al. Effect of inoculation with ectoand arbuscular mycorrhizae and rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New For, 2003, 25:125–131

    Google Scholar 

  327. Kong F X. Influence of copper, manganese and pH on the growth and several enzyme-activities in mycorrhizal fungus Amanita muscaria. Chemosphere, 1995, 30:199–207 1:STN:280:DyaK2M7nvFCqsA%3D%3D, 7874467, 10.1016/0045-6535(94)00393-9

    PubMed  CAS  Google Scholar 

  328. Tam P C F. Heavy-metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza, 1995, 5:181–187 1:CAS:528:DyaK2MXlslCksL4%3D, 10.1007/BF00203335

    CAS  Google Scholar 

  329. Kong F X, Liu Y, Cheng F D. Aluminum toxicity and nutrient utilization in the mycorrhizal fungus Hebeloma mesophacus. Bull Environ Contam Toxic, 1997, 59:125–131 1:CAS:528:DyaK2sXjslCqtLs%3D, 10.1007/s001289900454

    CAS  Google Scholar 

  330. Kong F X, Liu Y, Hu W, et al. Biochemical responses of the my corrhizae in Pinus massoniana to combined effects of Al, Ca and low pH. Chemosphere, 2000, 40:311–318 1:CAS:528:DC%2BD3cXkt1Oksw%3D%3D, 10665422, 10.1016/S0045-6535(99)00294-5

    PubMed  CAS  Google Scholar 

  331. Tan J K, Kong F X, Cao H S, et al. Effects of acid precipitation and aluminum on carbohydrate metabolism in mycorrhizae of Pinus massioniana. Bull Environ Contam Toxic, 2005, 74:614–622 1:CAS:528:DC%2BD2MXjsFSlt7Y%3D, 10.1007/s00128-005-0628-9

    CAS  Google Scholar 

  332. Liang Y, Chen H, Tang M J. Proteome analysis of an ectomycorrhizal fungus Boletus edulis under salt shock. Mycol Res, 2007, 111:939–946 1:CAS:528:DC%2BD2sXht1yjsrvL, 17716885, 10.1016/j.mycres.2007.06.005

    PubMed  CAS  Google Scholar 

  333. Li Y, Yuan L, Gao Z H, et al. Kinetics of Hg2+ absorption by ectomycorrhizal fungi (in Chinese). Mycosystema, 2004, 23:139–143 1:CAS:528:DC%2BD2cXntVCmsLw%3D

    CAS  Google Scholar 

  334. Xue X P, Zhang S, Li H T, et al. Effects of phosphorus on the excretion of oxalate, hydrion and phosphatase by ectomycorrhizal fungi Lactarius deliciosus and Laccaria bicolour (in Chinese). Mycosystema, 2008, 27:193–200 1:CAS:528:DC%2BD1MXlvFCjt7s%3D

    CAS  Google Scholar 

  335. Tam P C F, Griffiths D A. Mycorrhizal associations in Hong Kong Fagaceae: V. The role of polyphenols. Mycorrhiza, 1993, 3:165–170 1:CAS:528:DyaK2cXitFaktbw%3D, 10.1007/BF00203610

    CAS  Google Scholar 

  336. Huang Y, Zhao X, Luan S J. Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi. Sci Total Environ, 2007, 385:235–241 1:CAS:528:DC%2BD2sXhtVajs7nI, 17707073, 10.1016/j.scitotenv.2007.04.023

    PubMed  CAS  Google Scholar 

  337. Chao Y Q, Huang Y, Fei Y H, et al. Tolerance and enzyme response of ectomycorrhizal fungi Xerocomus chrysenteron to DDT stress (in Chinese). Chin J Environ Sci, 2008, 29:788–794 1:CAS:528:DC%2BD1cXmtlOjtb4%3D

    CAS  Google Scholar 

  338. Huang Y, Yang Q, Ao X L. Tolerance and physiological responses of ectomycorrhizal fungi to pentachloro-phenol (in Chinese). Acta Sci Circum, 2008, 28:2078–2083

    Google Scholar 

  339. Zhang C L, Wang W, Huang Y, et al. Growth of ectomycorrhizal fungi and mycorrhizal Pinus bungeana seedlings in response to coal cangue stress (in Chinese). Sci Silvae Sinicae, 2008, 44:68–71

    Google Scholar 

  340. Guo S X, Xu J T. Studies on the effects of fungi on the course of seed germination of Dendrobium lohohens and D. candidum (in Chinese). Acta Acad Med Sinica, 1991, 13:46–49 1:STN:280:DyaK3MzkslCmsg%3D%3D

    CAS  Google Scholar 

  341. Wu J P, Zheng S Z. Isolation and identification of Fusarium sp. from mycorrhizal fungus in Dendrobium densiflorum and analysis of its metabolites (in Chinese). J Fudan Univ (Nat Sci Edi), 1994, 33:547–552 1:CAS:528:DyaK2MXltVantL4%3D

    CAS  Google Scholar 

  342. Fan L, Guo S X, Cao W Q, et al. Isolation, culture, identification and biological activity of Mycena orchidicola sp. nov. in Cymbidium sinense (Orchidaceae) (in Chinese). Acta Mycol Sinica, 1996, 15:251–255

    Google Scholar 

  343. Fan Y, Guo S X, Xiao P G. A study on the mycorrhizal microstructure of six orchids (in Chinese). Chin Bull Bot, 2000, 17:73–79

    Google Scholar 

  344. Huang L, He X Y, Zeng L M, et al. Endophytic basidiomycetes in roots of nineteen orchids (in Chinese). Chin J Trop Crop, 1998, 19:77–82

    Google Scholar 

  345. Guo S X, Fan L, Cao W Q, et al. Mycena anoectochila sp. nov. isolated from mycorrhizal roots of Anoectochilus roxburghii from Xishuangbanna, China. Mycologia, 1997, 89:952–954 10.2307/3761116

    Google Scholar 

  346. Guo S X, Fan L, Cao W Q, et al. Mycena dendrobii, a new mycorrhizal fungus (in Chinese). Mycosystema, 1999, 18:141–144

    Google Scholar 

  347. Guo S X, Cao W Q, Cao H H. Isolation and biological activity of mycorrhizal fungi from Dendrobium candidum and D. nobile (in Chinese). J Chin Materia Medica, 2000, 25:338–341 1:CAS:528:DC%2BD3cXkvVKlt7g%3D

    CAS  Google Scholar 

  348. Chen R R, Lin X G, Shi Y Q. Research advances on the orchid mycorrhizae (in Chinese). Chinese J Appl Environ Biol, 2003, 9:97–101

    Google Scholar 

  349. Li M. Research and Application of Orchid Mycorrhizas (in Chinese). Kunming: Yunnan University Press, 2006. 1–278

    Google Scholar 

  350. Wu J R, Han S F, Zhu Y Y, et al. Study on taxonomy of endophytic fungi isolated from orchid mycorrhizae in Yunnan province (in Chinese). J Southwest For Coll, 2006, 26:5–10 1:CAS:528:DC%2BD2sXhsVylsbjK

    CAS  Google Scholar 

  351. Zhu G S, Yu Z N, Gui Y, et al. A novel technique for isolating orchid mycorrhizal fungi. Fungal Div, 2008, 33:123–137

    Google Scholar 

  352. Shan X C, Liew E C Y, Weatherhead M A, et al. Characterization and taxonomic placement of Rhizoctonia-like endophytes from orchid roots. Mycologia, 2002, 94:230–239 1:STN:280:DC%2BC3M%2FksVGgsQ%3D%3D, 21156492, 10.2307/3761799

    PubMed  CAS  Google Scholar 

  353. Shi J H, Li M. A preliminary study of mycorrhiza fungi of Cymbidium lianpan Tang et Wang (in Chinese). J Dali Univ, 2006, 5:15–18

    Google Scholar 

  354. Yan R, Liu H X, Cai F H, et al. A preliminary study of Changnienia amoena mycorrhizal fungi (in Chinese). J Beijing For Univ, 2006, 28:112–117

    Google Scholar 

  355. Huang Y H, Zhu G S, Liu Z Y, et al. Primary study on mycorrhizal microstructure of Cremastra appendiculate (D. Don) Makino (in Chinese). Guizhou Agri Sci, 2007, 35:16–17

    Google Scholar 

  356. Xiao P G, Guo S X, Fan Y. Interaction between Gastrodia elata (Orchidaceae) and Mycena anoectochila during seed germination (in Chinese). Mycosystema, 2001, 20:539–546

    Google Scholar 

  357. Chen R X, Shi Y Q, Lin X G, et al. Effect of inoculation of orchid mycorrhizal fungi on growth of tissue-cultured Dendrobium seedlings (in Chinese). Soils, 2004, 36:658–661

    Google Scholar 

  358. Jin H, Kang Z H, Chen H, et al. Effects of mycorrhizal fungi on the growth and mineral nutrition absorption of Dendrobium candidum (in Chinese). J Fujian Coll For, 2007, 27:80–83

    Google Scholar 

  359. Kang Z H, Han S F, Han Z M. Effects of Orchidaceous rhizoctonias on the growth of Dendrobium candidum (in Chinese). J Nanjing For Univ (Nat Scis Edi), 2007, 31:49–52

    Google Scholar 

  360. Yang Y L, Liu Z Y, Liu G S, et al. Effect of mycorrhizal fungi of Pleione bulbolodiodes Rolfe on growth of Dendrobium loddigesii Rolfe seedling (in Chinese). Seed (Guizhou), 2008, 27:34–37 1:CAS:528:DC%2BD1MXitFCmtrg%3D

    CAS  Google Scholar 

  361. Chen L Q, Wang X M, Pei Z D. The absorption of C-element by Dendrobium plants cultivated from tissues and mycorrhizae (in Chinese). Ecol Environ, 2005, 14:410–414

    Google Scholar 

  362. Chang D C N. Research and application of Orchid mycorrhiza in Taiwan. In: Criley R A, ed. ISHS Acta Horticulturae 766: XXVII International Horticultural Congress—IHC2006: International Symposium on Ornamentals, Now! Leuven, Belgium, 2008. 299–306

  363. Chang D C N, Chou L C. Seed germination of Haemaria discolor var. dawsoniana and the use of mycorrhizae. Symbiosis, 2001, 30:29–40

    Google Scholar 

  364. Chang D C N, Chou L C. Growth responses, enzyme activities, and component changes as influenced by Rhizoctonia Orchid mycorrhiza on Anoectochilus formosanus Hayata. Bot Stud, 2007, 48:445–451 1:CAS:528:DC%2BD2sXhsVyhurfO

    CAS  Google Scholar 

  365. Zhuang C Y, Li L B, Hu T, et al. A rapid and simple method for culturing of Cymbidium mycorrhizal fungi and extracting of DNA from the fungi for the analysis of rDNA ITS (in Chinese). J Beijing Agri Coll, 2007, 22:4–6

    Google Scholar 

  366. Li L B, Hu T, Yang K, et al. rDNA ITS analysis of mycorrhizal fungi in Cymbidium plants (in Chinese). For Sci, 2008, 44:160–164 1:CAS:528:DC%2BD1cXlsFaqtb0%3D

    CAS  Google Scholar 

  367. Li L B, Hu T, Yang K, et al. AFLP diversity in the mycorrhizal fungi of Cymbidium plants (in Chinese). Acta Horti Sinica, 2008, 35:81–86

    Google Scholar 

  368. Read D J, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol, 2003, 157:475–492 10.1046/j.1469-8137.2003.00704.x

    Google Scholar 

  369. He X H, Nara K. Element biofortification: Can mycorrhizas potentially offer a more effective and sustainable way to curb human malnutrition? Trends Plant Sci, 2007, 12:331–333 1:CAS:528:DC%2BD2sXosFGqu74%3D, 17658289, 10.1016/j.tplants.2007.06.008

    PubMed  CAS  Google Scholar 

  370. Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol, 2004, 164:347–355 10.1111/j.1469-8137.2004.01159.x

    Google Scholar 

  371. Garcia M O, Ovasapyan T, Greas M, et al. Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant Soil, 2008, 303:301–310 1:CAS:528:DC%2BD1cXht1ShtLg%3D, 10.1007/s11104-007-9509-9

    CAS  Google Scholar 

  372. Martin F, Aerts A, Ahren D, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 2008, 452:88–92 1:CAS:528:DC%2BD1cXivFyiurk%3D, 18322534, 10.1038/nature06556

    PubMed  CAS  Google Scholar 

  373. Liu R J. Recent advances in the study of mycorrhizas in China. Korean Soc Mycol Newsletter, 2005, 17:104–115 1:CAS:528:DC%2BD28XjvFCns7c%3D

    CAS  Google Scholar 

  374. Stone R. Showdown looms over a biological treasure trove. Science, 2008, 319:1604 1:CAS:528:DC%2BD1cXktFWls7o%3D, 18356498, 10.1126/science.319.5870.1604

    PubMed  CAS  Google Scholar 

  375. Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol, 2008, 180:673–683 18657210, 10.1111/j.1469-8137.2008.02573.x

    PubMed  Google Scholar 

  376. Simard S W, Perry D A, Jones M D, et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 1997, 388:579–582 1:CAS:528:DyaK2sXlt1ejurk%3D, 10.1038/41557

    CAS  Google Scholar 

  377. Harrier L A, Watson C A. The role of arbuscular mycorrhizal fungi in sustainable cropping systems. Adv Agron, 2003, 79:185–225 10.1016/S0065-2113(02)79004-4

    Google Scholar 

  378. Rillig M C, Ramsey P W, Morris S, et al. Glomalin, an arbuscularmycorrhizal fungal soil protein, responds to land-use change. Plant Soil, 2003, 253:293–299 1:CAS:528:DC%2BD3sXlsFKru7k%3D, 10.1023/A:1024807820579

    CAS  Google Scholar 

  379. He X H, Critchley C, Ng H, et al. Reciprocal N (15NH4+ or 15NO3) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol, 2004, 163:629–640 10.1111/j.1469-8137.2004.01137.x

    Google Scholar 

  380. He X H, Critchley C, Ng H, et al. Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. supplied as ammonium nitrate. New Phytol, 2005, 167:897–912 1:CAS:528:DC%2BD2MXhtVGitr%2FN, 16101925, 10.1111/j.1469-8137.2005.01437.x

    PubMed  CAS  Google Scholar 

  381. Southworth D, He X H, Swenson W S, et al. Application of network theory to potential mycorrhizal networks. Mycorrhiza, 2005, 15:589–595 1:STN:280:DC%2BD2MngtlGhuw%3D%3D, 15997390, 10.1007/s00572-005-0368-z

    PubMed  CAS  Google Scholar 

  382. He X H, Bledsoe C S, Zasoski R J, et al. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol, 2006, 170:143–151 1:CAS:528:DC%2BD28XksVyhtr8%3D, 16539611, 10.1111/j.1469-8137.2006.01648.x

    PubMed  CAS  Google Scholar 

  383. Rillig M C. Mycorrhizas and soil structure. New Phytol, 2006, 171:41–53 1:CAS:528:DC%2BD28Xnt1Clsrk%3D, 16771981, 10.1111/j.1469-8137.2006.01750.x

    PubMed  CAS  Google Scholar 

  384. Selosse M A, Richard F, He X H, et al. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol, 2006, 21:621–628 16843567, 10.1016/j.tree.2006.07.003

    PubMed  Google Scholar 

  385. Allen M F. Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone J, 2007, 6:291–297 10.2136/vzj2006.0068

    Google Scholar 

  386. He X H, Horwath W R, Zasoski R J, et al. Nitrogen sink strength of ectomycorrhizal morphotypes of Quercus douglasii, Q. garryana, and Q. agrifolia seedlings grown in a northern California oak woodland. Mycorrhiza, 2007, 18:33–41 1:CAS:528:DC%2BD2sXhtlClt7vJ, 17899217, 10.1007/s00572-007-0150-5

    PubMed  CAS  Google Scholar 

  387. Treseder K K, Turner K M. Glomalin in ecosystems. SSSA J, 2007, 71:1257–1266 1:CAS:528:DC%2BD2sXnvFCnurs%3D

    CAS  Google Scholar 

  388. Whitfield J. Underground networking. Nature, 2007, 449:136–138 1:CAS:528:DC%2BD2sXhtVagtLfL, 17851489, 10.1038/449136a

    PubMed  CAS  Google Scholar 

  389. Simard S W. Mycorrhizal networks and complex systems: Contributions of soil ecology science to managing climate change effects in forested ecosystems. Can J Soil Sci, 2009, 89:369–382 10.4141/cjss08078

    Google Scholar 

  390. Van Der Heijden M G A, Horton T R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol, 2009, 97:1139–1150 10.1111/j.1365-2745.2009.01570.x

    Google Scholar 

  391. Merckx V, Bidartondo M I, Hynson N A. Myco-heterotrophy: When fungi host plants. Ann Bot, 2009, 104:1255–1261 19767309, 10.1093/aob/mcp235

    PubMed  PubMed Central  Google Scholar 

  392. Selosse M A, Roy M. Green plants that feed on fungi: Facts and questions about mixotrophy. Trends Plant Sci, 2009, 14:64–70 1:CAS:528:DC%2BD1MXhsFOisrY%3D, 19162524, 10.1016/j.tplants.2008.11.004

    PubMed  CAS  Google Scholar 

  393. Taylor L L, Leake J R, Quirk J, et al. Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiol, 2009, 7:171–179 1:STN:280:DC%2BD1M3lvVeiuw%3D%3D, 10.1111/j.1472-4669.2009.00194.x

    CAS  Google Scholar 

  394. Holden C. Chinese Orchid craze. Science, 2006, 316:809

    Google Scholar 

  395. Wang F Y, Liu R J. Glomus zaozhuangianus, a new species of arbuscular mycorrhizal fungi (in Chinese). Mycosystema, 2002, 21:522–524

    Google Scholar 

  396. Qiao H Q, Zhang Y, Guo L D, et al. Arbuscular mycorrhizal fungi associated with most common plants in North Xinjiang (in Chinese). Mycosystema, 2005, 24:130–136

    Google Scholar 

  397. Gao Q M, Zhang Y, Guo L D, et al. Arbuscular mycorrhizal fungi in the southeast region of Tibet. Mycosystema, 2006, 25:234–243

    Google Scholar 

  398. Wang M Y, Cong L, Li M, et al. Three new records of arbuscular mycorrhizal fungi in China (in Chinese). Mycosystema, 2006, 25:244–246 1:CAS:528:DC%2BD2sXht1GjtLjJ

    CAS  Google Scholar 

  399. Cai B P, Zhang Y, Chen J Y, et al. Three new records of arbuscular mycorrhizal fungi associated with wild Prunus mume from Tibet in China. Mycosystema, 2007, 26:36–39

    Google Scholar 

  400. Cai B P, Chen J Y, Zhang Q X, et al. Three new records of arbuscular mycorrhizal fungi associated with Prunus mume in China. Mycosystema, 2008a, 27:538–542

    Google Scholar 

  401. Chou W N, Yen C H, Chung H H. Species of Gigaspora and Scutellospora (Endogonaceae) in Taiwan. Trans Mycol Soc Repub China, 1991, 6:1–17

    Google Scholar 

  402. Zhang M Q, Wang Y S, Xing L J. Glomus dolichosporum, a new species of Glomales from southern China (in Chinese). Mycosystema, 1997, 16:241–243

    Google Scholar 

  403. Hu H T. Glomus spinosum sp. nov. in the Glomaceae from Taiwan. Mycotaxon, 2002, 83:159–164

    Google Scholar 

  404. Pan X L, Zhang G Y, Wang Y J, et al. A new VAM species from the loess plateau, Scutellospora trirubiginopa (in Chinese). Mycosystema, 1997, 16:169–171

    Google Scholar 

  405. Zhang Y, Gao Q M, Guo L D. Seven new records of arbuscular mycorrhizal fungi in China. Mycosystema, 2007, 26:74–78 1:CAS:528:DC%2BD1cXksFCmsL4%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinHua He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Duan, Y., Chen, Y. et al. A 60-year journey of mycorrhizal research in China: Past, present and future directions. Sci. China Life Sci. 53, 1374–1398 (2010). https://doi.org/10.1007/s11427-010-4096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4096-z

Keywords

Navigation