Skip to main content
Log in

Expression pattern and core region analysis of AtMPK3 promoter in response to environmental stresses

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The protein kinase AtMPK3, a component of the MAP kinase cascade, plays an important role in stress signal transduction in plant cells. To clarify how AtMPK3 is regulated at the transcriptional level in response to various environmental factors, the 1016-bp promoter sequence upstream of the transcription start site of the AtMPK3 gene was isolated. Analyses of the promoter sequence using plant promoter databases revealed that the AtMPK3 promoter contains many potential cis-acting elements involved in environmental stress responses. We constructed four deletion mutants of the AtMPK3 promoter, and introduced the intact and truncated promoter sequences fused to the β-glucuronidase (GUS) gene into Arabidopsis. GUS histochemical staining and quantitative fluorometric GUS assays were performed to visualize and compare the expression patterns in response to different environmental stimuli. The region between −188 and −62 upstream of the transcription start site was identified as the essential DNA sequence of the AtMPK3 promoter for responses to drought, high salinity, low temperature, and wounding. These results advance our understanding of the molecular mechanisms controlling AtMPK3 expression in response to different environmental stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popescu S C, Popescu G V, Bachan S, et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009, 23: 80–92 1:CAS:528:DC%2BD1MXptFWltQ%3D%3D, 10.1101/gad.1740009, 19095804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413: 217–226 1:CAS:528:DC%2BD1cXnslKhu70%3D, 10.1042/BJ20080625, 18570633

    Article  PubMed  CAS  Google Scholar 

  3. Mishra N S, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Biophys, 2006, 452: 55–68 1:CAS:528:DC%2BD28Xns1Gqs7s%3D, 10.1016/j.abb.2006.05.001, 16806044

    Article  PubMed  CAS  Google Scholar 

  4. Mizoguchi T, Irie K, Hirayama T, et al. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996, 93: 765–769 1:CAS:528:DyaK28XnslOktw%3D%3D, 10.1073/pnas.93.2.765, 8570631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci, 2005, 10: 339–346 1:CAS:528:DC%2BD2MXlvFynur4%3D, 10.1016/j.tplants.2005.05.009, 15953753

    Article  PubMed  CAS  Google Scholar 

  6. Ren D, Liu Y, Yang K Y, et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA, 2008, 105: 5638–5643 1:CAS:528:DC%2BD1cXkslSntL4%3D, 10.1073/pnas.0711301105, 18378893

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ichimura K, Shinozaki K, Tena G, et al. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301–308 1:CAS:528:DC%2BD38Xlt1Ohtbw%3D, 10.1016/S1360-1385(02)02302-6

    Article  CAS  Google Scholar 

  8. Droillard M, Boudsocq M, Barbier-Brygoo H, et al. Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions: involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett, 2002, 527: 43–50 1:CAS:528:DC%2BD38XmvVCltL4%3D, 10.1016/S0014-5793(02)03162-9, 12220631

    Article  PubMed  CAS  Google Scholar 

  9. Lu C, Han M H, Guevara-Garcia A, et al. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA, 2002, 99: 15812–15817 1:CAS:528:DC%2BD3sXjvFan, 10.1073/pnas.242607499, 12434021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977–983 1:CAS:528:DC%2BD38Xhsl2lu7c%3D, 10.1038/415977a, 11875555

    Article  PubMed  CAS  Google Scholar 

  11. Wang H, Ngwenyama N, Liu Y, et al. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell, 2007, 19: 63–73 10.1105/tpc.106.048298, 17259259

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ramonell K, Berrocal-Lobo M, Koh S, et al. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol, 2005, 138: 1027–1036 1:CAS:528:DC%2BD2MXmtVejsLw%3D, 10.1104/pp.105.060947, 15923325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kovtun Y, Chiu W L, Tena G, et al. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 2000, 97: 2940–2945 1:CAS:528:DC%2BD3cXitVaht70%3D, 10.1073/pnas.97.6.2940, 10717008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res, 1999, 27: 297–3 10.1093/nar/27.1.297

    Article  Google Scholar 

  15. Palaniswamy S K, James S, Sun H, et al. AGRIS and AtRegNet: a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol, 2006, 140: 818–829 1:CAS:528:DC%2BD28Xislyhu7w%3D, 10.1104/pp.105.072280, 16524982

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Davuluri R V, Sun H, Palaniswamy S K, et al. AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics, 2003, 4: 25 10.1186/1471-2105-4-25, 12820902

    Article  PubMed  PubMed Central  Google Scholar 

  17. Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743 1:STN:280:DyaK1M7mvVagsQ%3D%3D, 10.1046/j.1365-313x.1998.00343.x, 10069079

    Article  PubMed  CAS  Google Scholar 

  18. Zhou J, Wang L, Du J M, et al. Isolation and characterization of γ-TMT gene promoter from Arabidopsis thaliana. Chin J Biotechnol (in Chinese), 2006, 22: 835–839 1:CAS:528:DC%2BD2sXktlSnsr8%3D

    CAS  Google Scholar 

  19. Zhu Y X, Wang L, Zhang L, et al. Isolation and characterization of homogentisate phytyltransferase (HPT) gene promoter from Arabidopsis thaliana. Acta Agron Sin (in Chinese), 2007, 33: 554–559 1:CAS:528:DC%2BD1cXlvFKht7s%3D

    CAS  Google Scholar 

  20. Wang L, Luo Y Z, Zhang L, et al. Rolling circle amplification-mediated hairpin RNA (RMHR) library construction in plants. Nucleic Acids Res, 2008, 36: 1–9 10.1093/nar/gkn381

    Article  Google Scholar 

  21. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254 1:CAS:528:DyaE28XksVehtrY%3D, 10.1016/0003-2697(76)90527-3, 942051

    Article  PubMed  CAS  Google Scholar 

  22. Shahmuradov I A, Gammerman A J, Hancock J M, et al. PlantProm: a database of plant promoter sequences. Nucleic Acids Res, 2003, 31: 114–117 1:CAS:528:DC%2BD3sXhvFSns7g%3D, 10.1093/nar/gkg041, 12519961

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Rombauts S, Déhais P, Van Montagu M, et al. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res, 1999, 27: 295–296 1:CAS:528:DyaK1MXpsVKgtQ%3D%3D, 10.1093/nar/27.1.295, 9847207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol, 1993, 101: 1119–1120 1:CAS:528:DyaK3sXisVyqtbc%3D, 10.1104/pp.101.3.1119, 8310052

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Baker S S, Wilhelm K S, Thomashow M F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701–713 1:CAS:528:DyaK2cXkslCqtrw%3D, 10.1007/BF00029852, 8193295

    Article  PubMed  CAS  Google Scholar 

  26. Kim H J, Kim Y K, Park J Y, et al. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J, 2002, 29: 693–704 1:CAS:528:DC%2BD38Xjs12nu7g%3D, 10.1046/j.1365-313X.2002.01249.x, 12148528

    Article  PubMed  CAS  Google Scholar 

  27. Goldsbrough A P, Albrecht H, Stratford R. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J, 1993, 3: 563–571 1:CAS:528:DyaK3sXlsFehtrk%3D, 10.1046/j.1365-313X.1993.03040563.x, 8220463

    Article  PubMed  CAS  Google Scholar 

  28. Brown R L, Kazan K, McGrath K C, et al. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol, 2003, 132: 1020–1032 1:CAS:528:DC%2BD3sXkslertbg%3D, 10.1104/pp.102.017814, 12805630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Chakravarthy S, Tuori R P, DAscenzo M D, et al. The tomato transcription factor Pti4 regulates defence-related gene expression via GCC box and non-GCC box cis elements. Plant Cell, 2003, 15: 3033–3050 1:CAS:528:DC%2BD2cXhtVSgsQ%3D%3D, 10.1105/tpc.017574, 14630974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Xu X, Chen C, Fan B, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell, 2006, 18: 1310–1326 1:CAS:528:DC%2BD28XkslCmu7c%3D, 10.1105/tpc.105.037523, 16603654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Su, Q., Fan, Y. et al. Expression pattern and core region analysis of AtMPK3 promoter in response to environmental stresses. Sci. China Life Sci. 53, 1315–1321 (2010). https://doi.org/10.1007/s11427-010-4079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4079-0

Keywords

Navigation