Skip to main content
Log in

Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Elucidating the underlying mechanisms of cell physiology is currently an important research topic in life sciences. Atomic force microscopy methods can be used to investigate these molecular mechanisms. In this study, single-molecule force spectroscopy was used to explore the specific recognition between the CD20 antigen and anti-CD20 antibody Rituximab on B lymphoma cells under near-physiological conditions. The CD20-Rituximab specific binding force was measured through tip functionalization. Distribution of CD20 on the B lymphoma cells was visualized three-dimensionally. In addition, the relationship between the intramolecular force and the molecular extension of the CD20-Rituximab complex was analyzed under an external force. These results facilitate further investigation of the mechanism of Rituximab’s anti-cancer effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuang X, Bartley L E, Babcock H P, et al. A single-molecule study of RNA catalysis and folding. Science, 2000, 288: 2048–2051, 1:CAS:528:DC%2BD3cXkt1Kjs70%3D, 10.1126/science.288.5473.2048, 10856219

    Article  PubMed  Google Scholar 

  2. Xie X S, Yu J, Yang W Y. Living cells as test tubes. Science, 2006, 312: 228–230, 1:CAS:528:DC%2BD28XjtlKqu7s%3D, 10.1126/science.1127566, 16614211

    Article  PubMed  Google Scholar 

  3. Dufrene Y F. Atomic force microscopy: a powerful molecular toolkit in nanoproteomics. Proteomics, 2009, 9: 5400–5405, 1:CAS:528:DC%2BD1MXhsF2isbzM, 10.1002/pmic.200800972, 19813211

    Article  PubMed  Google Scholar 

  4. Chen Y Z. Visualizing the single molecule in live cells (in Chinese). Chin Bull Life Sci, 2003, 15: 79–82

    Google Scholar 

  5. Dupres V, Alsteens D, Andre G, et al. Fishing single molecules on live cells. Nano Today, 2009, 4: 262–268, 1:CAS:528:DC%2BC3cXltFGms7c%3D, 10.1016/j.nantod.2009.04.011

    Article  Google Scholar 

  6. Chen Y Z. Recent important progress of cell molecule research (in Chinese). Chin Bull Life Sci, 2008, 20: 1–2, 1:CAS:528:DC%2BD1cXkslOlsbs%3D

    Article  Google Scholar 

  7. Dague E, Alsteens D, Latge J P, et al. High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys J, 2008, 94: 656–660, 1:CAS:528:DC%2BD1cXnsVOltQ%3D%3D, 10.1529/biophysj.107.116491, 17890393

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hinterdorfer P, Dufrene Y F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods, 2006, 3: 347–355, 1:CAS:528:DC%2BD28XjslSksbg%3D, 10.1038/nmeth871, 16628204

    Article  PubMed  Google Scholar 

  9. Sun D L, Chen J M, Song Y M, et al. Topography and functional information of plasma membrane. Sci China Ser C-Life Sci, 2008, 51: 95–103, 1:CAS:528:DC%2BD1cXmsVylsb8%3D, 10.1007/s11427-008-0007-y

    Article  Google Scholar 

  10. Neuman K C, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods, 2008, 5: 491–505, 1:CAS:528:DC%2BD1cXmsVOjtLk%3D, 10.1038/nmeth.1218, 18511917

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dupres V, Alsteens D, Wilk S, et al. The yeast wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol, 2009, 5: 857–862, 1:CAS:528:DC%2BD1MXhtFGjt7vO, 10.1038/nchembio.220, 19767735

    Article  PubMed  Google Scholar 

  12. Pfister G, Stroh C M, Perschinka H, et al. Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci, 2005, 118: 1587–1594, 1:CAS:528:DC%2BD2MXktlyhsLo%3D, 10.1242/jcs.02292, 15784682

    Article  PubMed  Google Scholar 

  13. Cross S E, Jin Y S, Rao J Y, et al. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol, 2007, 2: 780–783, 1:CAS:528:DC%2BD2sXhtlyktL7L, 10.1038/nnano.2007.388, 18654431

    Article  PubMed  Google Scholar 

  14. Edwardson J M, Henderson R M. Atomic force microscopy and drug discovery. Drug Discov Today, 2004, 9: 64–71, 1:CAS:528:DC%2BD2cXhvFWitL4%3D, 10.1016/S1359-6446(03)02905-2, 15012930

    Article  PubMed  Google Scholar 

  15. Muller D J, Krieg M, Alsteens D, et al. New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Curr Opin Biotechnol, 2009, 20: 4–13, 10.1016/j.copbio.2009.02.005, 19264474

    Article  PubMed  Google Scholar 

  16. Florin E L, Moy V T, Gaub H E. Adhesion forces between individual ligand-receptor pairs. Science, 1994, 264: 415–417, 1:CAS:528:DyaK2cXkslKltrc%3D, 10.1126/science.8153628, 8153628

    Article  PubMed  Google Scholar 

  17. Hinterdorfer P, Baumgartner W, Gruber H J, et al. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA, 1996, 93: 3477–3481, 1:CAS:528:DyaK28XisVWit7g%3D, 10.1073/pnas.93.8.3477, 8622961

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Bogorin D F, Moy V T. Molecular basis of the dynamic strength of the sialyl Lewis X-selectin interaction. ChemPhysChem, 2004, 5: 175–182, 1:CAS:528:DC%2BD2cXhvFOqsrs%3D, 10.1002/cphc.200300813, 15038277

    Article  PubMed  Google Scholar 

  19. Puntheeranurak T, Wildling L, Gruber H J, et al. Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. J Cell Sci, 2006, 119: 2960–2967, 1:CAS:528:DC%2BD28XotleitLw%3D, 10.1242/jcs.03035, 16787940

    Article  PubMed  Google Scholar 

  20. Lee S, Mandic J, Vliet K J V. Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci USA, 2007, 104: 9609–9614, 1:CAS:528:DC%2BD2sXmsFWjsLc%3D, 10.1073/pnas.0702668104, 17535923

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shi X, Xu L, Yu J, et al. Study of inhibition effect of Herceptin on interaction between Heregulin and ErbB receptors HER3/HER2 by single-molecule force spectroscopy. Exp Cell Res, 2009, 315: 2847–2855, 1:CAS:528:DC%2BD1MXhtVentbrM, 10.1016/j.yexcr.2009.05.023, 19497323

    Article  PubMed  Google Scholar 

  22. Verbelen C, Dufrene Y F. Direct measurement of Mycobacterium-fibronectin interactions. Integr Biol, 2009, 1: 296–300, 1:CAS:528:DC%2BD1MXhsFKrs7%2FJ, 10.1039/b901396b

    Article  Google Scholar 

  23. Dupres V, Menozzi F D, Locht C, et al. Nanoscale mapping and functional analysis of individual adhesions on living bacteria. Nat Methods, 2005, 2: 515–520, 1:CAS:528:DC%2BD2MXltl2ntbg%3D, 10.1038/nmeth769, 15973422

    Article  PubMed  Google Scholar 

  24. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA-Cancer J Clin, 2009, 59: 225–249, 10.3322/caac.20006, 19474385

    Article  PubMed  Google Scholar 

  25. Cheson B D, Leonard J P. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med, 2008, 359: 613–626, 1:CAS:528:DC%2BD1cXpt12qtbw%3D, 10.1056/NEJMra0708875, 18687642

    Article  PubMed  Google Scholar 

  26. Lim S H, Beers S A, French R R, et al. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica, 2010, 95: 135–143, 1:CAS:528:DC%2BC3cXitlals7c%3D, 10.3324/haematol.2008.001628, 19773256

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deans J P, Li H, Polyak M J. CD20-mediated apoptosis: signaling through lipid rafts. Immunology, 2002, 107: 176–182, 1:CAS:528:DC%2BD38XosF2rsLs%3D, 10.1046/j.1365-2567.2002.01495.x, 12383196

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cartron G, Watier H, Golay J, et al. From the bench to the bedside: ways to improve rituximab efficacy. Blood, 2004, 104: 2635–2642, 1:CAS:528:DC%2BD2cXpslKjs70%3D, 10.1182/blood-2004-03-1110, 15226177

    Article  PubMed  Google Scholar 

  29. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer, 2001, 1: 118–129, 1:CAS:528:DC%2BD38XlvF2qsLw%3D, 10.1038/35101072, 11905803

    Article  PubMed  Google Scholar 

  30. Teeling J L, Mackus W J M, Wiegman L J J M, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol, 2006, 177: 362–371, 1:CAS:528:DC%2BD28XlvV2nt74%3D, 16785532

    Article  PubMed  Google Scholar 

  31. Smith M R. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene, 2003, 22: 7359–7368, 1:CAS:528:DC%2BD3sXotlajuro%3D, 10.1038/sj.onc.1206939, 14576843

    Article  PubMed  Google Scholar 

  32. Nimmerjahn F, Ravetch J V. Antibodies, Fc receptors and cancer. Curr Opin Immunol, 2007, 19: 239–245, 1:CAS:528:DC%2BD2sXislehsro%3D, 10.1016/j.coi.2007.01.005, 17291742

    Article  PubMed  Google Scholar 

  33. Adams G P, Weiner L M. Monoclonal antibody therapy of cancer. Nat Biotechnol, 2005, 23: 1147–1157, 1:CAS:528:DC%2BD2MXpvVyrtr0%3D, 10.1038/nbt1137, 16151408

    Article  PubMed  Google Scholar 

  34. Matzke R, Jacobson K, Radmacher M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol, 2001, 3: 607–610, 1:CAS:528:DC%2BD3MXksFelu74%3D, 10.1038/35078583, 11389447

    Article  PubMed  Google Scholar 

  35. Kada G, Kienberger F, Hinterdorfer P. Atomic force microscopy in bionanotechnology. Nano Today, 2008, 3: 12–19, 1:CAS:528:DC%2BD1cXhtFemsbzE, 10.1016/S1748-0132(08)70011-2

    Article  Google Scholar 

  36. Dufrene Y F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc, 2008, 3: 1132–1138, 1:CAS:528:DC%2BD1cXotFaktbs%3D, 10.1038/nprot.2008.101, 18600218

    Article  PubMed  Google Scholar 

  37. Nowakowski R, Luckham P, Winlove P. Imaging erythrocytes under physiological conditions by atomic force microscopy. Biochim Biophys Acta, 2001, 1514: 170–176, 1:CAS:528:DC%2BD3MXms1OlsL4%3D, 10.1016/S0005-2736(01)00365-0, 11557018

    Article  PubMed  Google Scholar 

  38. Yu J, Wang Q, Shi X, et al. Single-molecule force spectroscopy study of interaction between transforming growth factor β1 and its receptor in living cells. J Phys Chem B, 2007, 111: 13619–13625, 1:CAS:528:DC%2BD2sXht1yrurvP, 10.1021/jp0758667, 17997544

    Article  PubMed  Google Scholar 

  39. Ebner A, Wildling L, Kamruzzahan A S M, et al. A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate Chem, 2007, 18: 1176–1184, 1:CAS:528:DC%2BD2sXls1Smt7w%3D, 10.1021/bc070030s

    Article  Google Scholar 

  40. Stroh C, Wang H, Bash R, et al. Single-molecule recognition imaging microscopy. Proc Natl Acad Sci USA, 2004, 101: 12503–12507, 1:CAS:528:DC%2BD2cXnsVensLw%3D, 10.1073/pnas.0403538101, 15314231

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu Y C, Shi X L, Fang X H. Biomolecular interaction study by atomic force microscopy single-molecule force spectroscopy (in Chinese). Chin Bull Life Sci, 2008, 20: 39–45, 1:CAS:528:DC%2BD1cXls1Orsro%3D

    Google Scholar 

  42. Bustanji Y, Arciola C R, Conti M, et al. Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proc Natl Acad Sci USA, 2003, 100: 13292–13297, 1:CAS:528:DC%2BD3sXptFOis70%3D, 10.1073/pnas.1735343100, 14573699

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stevens F, Lo Y S, Harris J M, et al. Computer modeling of atomic force microscopy force measurements: comparisons of Poisson, histogram, and continuum methods. Langmuir, 1999, 15: 207–213, 1:CAS:528:DyaK1cXnslOhu7w%3D, 10.1021/la980683k

    Article  Google Scholar 

  44. Yang Q, Sun R G. Elasticity of red blood cell membrane using AFM force curve measurement. Sci China Ser C-Life Sci (in Chinese), 2008, 38: 1013–1027

    Google Scholar 

  45. Chen P P, Dong H T, Chen L, et al. Application of atomic force microscopy to living samples from cells to fresh tissues. Chin Sci Bull, 2009, 54: 2410–2415, 1:CAS:528:DC%2BD1MXovVSgu7c%3D, 10.1007/s11434-009-0374-1

    Article  Google Scholar 

  46. Muller D J, Helenius J, Alsteens D, et al. Force probing surfaces of living cells to molecular resolution. Nat Chem Biol, 2009, 5: 383–390, 10.1038/nchembio.181, 19448607

    Article  PubMed  Google Scholar 

  47. Gu X, Jia X, Feng J, et al. Molecular modeling and affinity determination of scFv antibody: proper linker peptide enhances its activity. Ann Biomed Eng, 2010, 38: 537–549, 10.1007/s10439-009-9810-2, 19816775

    Article  PubMed  Google Scholar 

  48. Fritz J, Katopodis A G, Kolbinger F, et al. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci USA, 1998, 95: 12283–12288, 1:CAS:528:DyaK1cXmsl2rsbg%3D, 10.1073/pnas.95.21.12283, 9770478

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marshall B T, Sarangapani K K, Wu J, et al. Measuring molecular elasticity by atomic force microscope cantilever fluctuations. Biophys J, 2006, 90: 681–692, 1:CAS:528:DC%2BD28XktlKrtQ%3D%3D, 10.1529/biophysj.105.061010, 16258054

    Article  PubMed  PubMed Central  Google Scholar 

  50. Janshoff A, Neitzert M, Oberdorfer Y, et al. Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules. Angew Chem Int Edit, 2000, 39: 3212–3237, 1:CAS:528:DC%2BD3cXntlektr8%3D

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LianQing Liu, Ning Xi or WeiJing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Liu, L., Xi, N. et al. Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy. Sci. China Life Sci. 53, 1189–1195 (2010). https://doi.org/10.1007/s11427-010-4070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4070-9

Keywords

Navigation