Skip to main content
Log in

Regulation of embryonic stem cell self-renewal and differentiation by TGF-β family signaling

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Embryonic stem (ES) cells are characterized by their ability to indefinitely self-renew and potential to differentiate into all the cell lineages of the body. ES cells are considered to have potential applications in regenerative medicine. In particular, the emergence of an ES cell analogue — induced pluripotent stem (iPS) cells via somatic cell reprogramming by co-expressing a limited number of critical stemness-related transcriptional factors has solved the problem of obtaining patient-specific pluripotent cells, encouraging researchers to develop more specific and functional cell lineages from ES or iPS cells for broad therapeutic applications. ES cell fate choice is delicately controlled by a core transcriptional network, epigenetic modification profiles and complex signaling cascades both intrinsically and extrinsically. Of these signals, transforming growth factor β (TGF-β) family members, including TGF-β, bone morphogenetic protein (BMP), Activin and Nodal, have been reported to influence cell self-renewal and a broad spectrum of lineage differentiation in ES cells, in accordance with the key roles of TGF-β family signaling in early embryo development. In this review, the roles of TGF-β family signals in coordinating ES cell fate determination are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292:154–156 10.1038/292154a0, 1:STN:280:DyaL3M3itV2qsg%3D%3D, 7242681

    Article  PubMed  Google Scholar 

  2. Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78:7634–7638 10.1073/pnas.78.12.7634, 1:STN:280:DyaL387ltV2htg%3D%3D, 6950406

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282:1145–1147 10.1126/science.282.5391.1145, 1:CAS:528:DyaK1cXntleisLg%3D, 9804556

    Article  PubMed  Google Scholar 

  4. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126:663–676 10.1016/j.cell.2006.07.024, 1:CAS:528:DC%2BD28Xpt1aktbs%3D, 16904174

    Article  PubMed  Google Scholar 

  5. Chen L, Liu L. Current progress and prospects of induced pluripotent stem cells. Sci China C Life Sci, 2009, 52:622–636 10.1007/s11427-009-0092-6, 19641867

    Article  PubMed  Google Scholar 

  6. Boyer L A, Mathur D, Jaenisch R. Molecular control of pluripotency. Curr Opin Genet Dev, 2006, 16:455–462 10.1016/j.gde.2006.08.009, 1:CAS:528:DC%2BD28Xps1Ogurg%3D, 16920351

    Article  PubMed  Google Scholar 

  7. Niwa H. How is pluripotency determined and maintained? Development, 2007, 134:635–646 10.1242/dev.02787, 1:CAS:528:DC%2BD2sXjsVyrtLg%3D, 17215298

    Article  PubMed  Google Scholar 

  8. Boiani M, Scholer H R. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol, 2005, 6:872–884 10.1038/nrm1744, 1:CAS:528:DC%2BD2MXhtFKlsLzE, 16227977

    Article  PubMed  Google Scholar 

  9. Datto M, Wang X F. The Smads: Transcriptional regulation and mouse models. Cytokine Growth Factor Rev, 2000, 11:37–48 10.1016/S1359-6101(99)00027-1, 1:CAS:528:DC%2BD3cXitlGjsr8%3D, 10708951

    Article  PubMed  Google Scholar 

  10. Feng X H, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol, 2005, 21:659–693 10.1146/annurev.cellbio.21.022404.142018, 1:CAS:528:DC%2BD2MXhtlektbjM, 16212511

    Article  PubMed  Google Scholar 

  11. Massague J, Chen Y G. Controlling TGF-beta signaling. Genes Dev, 2000, 14:627–644 1:CAS:528:DC%2BD3cXisVShu78%3D, 10733523

    PubMed  Google Scholar 

  12. Smith A G. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol, 2001, 17:435–462 10.1146/annurev.cellbio.17.1.435, 1:CAS:528:DC%2BD3MXos1Omsbo%3D, 11687496

    Article  PubMed  Google Scholar 

  13. Niwa H, Burdon T, Chambers I, et al. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev, 1998, 12:2048–2060 10.1101/gad.12.13.2048, 1:CAS:528:DyaK1cXksFygtbk%3D, 9649508

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ying Q L, Nichols J, Chambers I, et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 2003, 115:281–292 10.1016/S0092-8674(03)00847-X, 1:CAS:528:DC%2BD3sXovFClu7c%3D, 14636556

    Article  PubMed  Google Scholar 

  15. Qi X, Li T G, Hao J, et al. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA, 2004, 101:6027–6032 10.1073/pnas.0401367101, 1:CAS:528:DC%2BD2cXjsFKnsbo%3D, 15075392

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fei T, Xia K, Li Z, et al. Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Res, 2010, 20:36–44 10.1101/gr.092114.109, 1:CAS:528:DC%2BC3cXls1OmtA%3D%3D, 19926752

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xiao L, Yuan X, Sharkis S J. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells, 2006, 24:1476–1486 10.1634/stemcells.2005-0299, 1:CAS:528:DC%2BD28XhtFKlsbbM, 16456129

    Article  PubMed  Google Scholar 

  18. James D, Levine A J, Besser D, et al. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 2005, 132:1273–1282 10.1242/dev.01706, 1:CAS:528:DC%2BD2MXjsFentLs%3D, 15703277

    Article  PubMed  Google Scholar 

  19. Wu Z, Zhang W, Chen G, et al. Combinatorial signals of activin/nodal and bone morphogenic protein regulate the early lineage segregation of human embryonic stem cells. J Biol Chem, 2008, 283:24991–25002 10.1074/jbc.M803893200, 1:CAS:528:DC%2BD1cXhtVGktbnF, 18596037

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu R H, Sampsell-Barron T L, Gu F, et al. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 2008, 3:196–206 10.1016/j.stem.2008.07.001, 1:CAS:528:DC%2BD1cXhtVegtr%2FO, 18682241

    Article  PubMed  PubMed Central  Google Scholar 

  21. Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res, 2009, 19:103–115 10.1038/cr.2008.323, 1:CAS:528:DC%2BD1MXht1Ggsg%3D%3D, 19114993

    Article  PubMed  Google Scholar 

  22. Liu A, Niswander L A. Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci, 2005, 6:945–954 10.1038/nrn1805, 1:CAS:528:DC%2BD2MXht12ntbvK, 16340955

    Article  PubMed  Google Scholar 

  23. Finley M F, Devata S, Huettner J E. BMP-4 inhibits neural differentiation of murine embryonic stem cells. J Neurobiol, 1999, 40: 271–287 10.1002/(SICI)1097-4695(19990905)40:3<271::AID-NEU1>3.0.CO;2-C, 1:CAS:528:DyaK1MXlslKit7Y%3D, 10440729

    Article  PubMed  Google Scholar 

  24. Ying Q L, Stavridis M, Griffiths D, et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol, 2003, 21:183–186 10.1038/nbt780, 1:CAS:528:DC%2BD3sXnsFWitQ%3D%3D, 12524553

    Article  PubMed  Google Scholar 

  25. Vallier L, Reynolds D, Pedersen R A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol, 2004, 275:403–421 10.1016/j.ydbio.2004.08.031, 1:CAS:528:DC%2BD2cXovVKltbg%3D, 15501227

    Article  PubMed  Google Scholar 

  26. Chambers S M, Fasano C A, Papapetrou E P, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 2009, 27:275–280 10.1038/nbt.1529, 1:CAS:528:DC%2BD1MXisVOrtrc%3D, 19252484

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aberdam D. Derivation of keratinocyte progenitor cells and skin formation from embryonic stem cells. Int J Dev Biol, 2004, 48: 203–206 10.1387/ijdb.15272386, 1:CAS:528:DC%2BD2cXmsVKlu7g%3D, 15272386

    Article  PubMed  Google Scholar 

  28. Aberdam D, Gambaro K, Rostagno P, et al. Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle, 2007, 6:291–294 1:CAS:528:DC%2BD2sXnvFygt7Y%3D, 17264680

    Article  PubMed  Google Scholar 

  29. Loebel D A, Watson C M, De Young R A, et al. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol, 2003, 264:1–14 10.1016/S0012-1606(03)00390-7, 1:CAS:528:DC%2BD3sXovVeiu7w%3D, 14623228

    Article  PubMed  Google Scholar 

  30. Olsen A L, Stachura D L, Weiss M J. Designer blood: Creating hematopoietic lineages from embryonic stem cells. Blood, 2006, 107:1265–1275 10.1182/blood-2005-09-3621, 1:CAS:528:DC%2BD28XhsFems7c%3D, 16254136

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nakayama N, Lee J, Chiu L. Vascular endothelial growth factor synergistically enhances bone morphogenetic protein-4-dependent lymphohematopoietic cell generation from embryonic stem cells in vitro. Blood, 2000, 95:2275–2283 1:CAS:528:DC%2BD3cXitFeitrk%3D, 10733496

    PubMed  Google Scholar 

  32. Park C, Afrikanova I, Chung Y S, et al. A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development, 2004, 131:2749–2762 10.1242/dev.01130, 1:CAS:528:DC%2BD2cXltlajt7s%3D, 15148304

    Article  PubMed  Google Scholar 

  33. Lee D, Park C, Lee H, et al. ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell, 2008, 2:497–507 10.1016/j.stem.2008.03.008, 1:CAS:528:DC%2BD1cXmt1WrsL8%3D, 18462699

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lengerke C, Schmitt S, Bowman T V, et al. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell, 2008, 2:72–82 10.1016/j.stem.2007.10.022, 1:CAS:528:DC%2BD1cXhtFOlt7Y%3D, 18371423

    Article  PubMed  Google Scholar 

  35. Singh A M, Terada N. Bypassing heterogeneity: The road to embryonic stem cell-derived cardiomyocyte specification. Trends Cardiovasc Med, 2007, 17:96–101 10.1016/j.tcm.2007.02.003, 1:CAS:528:DC%2BD2sXjvFGgtbc%3D, 17418371

    Article  PubMed  Google Scholar 

  36. Parisi S, D’Andrea D, Lago C T, et al. Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells. J Cell Biol, 2003, 163:303–314 10.1083/jcb.200303010, 1:CAS:528:DC%2BD3sXos1Sjt7s%3D, 14581455

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hao J, Daleo M A, Murphy C K, et al. Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One, 2008, 3:e2904 10.1371/journal.pone.0002904, 18682835

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yuasa S, Itabashi Y, Koshimizu U, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol, 2005, 23:607–611 10.1038/nbt1093, 1:CAS:528:DC%2BD2MXjvV2nur4%3D, 15867910

    Article  PubMed  Google Scholar 

  39. Takei S, Ichikawa H, Johkura K, et al. Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development. Am J Physiol Heart Circ Physiol, 2009, 296:H1793–1803 10.1152/ajpheart.01288.2008, 1:CAS:528:DC%2BD1MXnsF2ltrk%3D, 19363129

    Article  PubMed  Google Scholar 

  40. Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev, 2006, 16:525–532 10.1016/j.gde.2006.08.008, 1:CAS:528:DC%2BD28Xps1Ogu7k%3D, 16930987

    Article  PubMed  Google Scholar 

  41. He L, Vichev K, Macharia R, et al. Activin A inhibits formation of skeletal muscle during chick development. Anat Embryol (Berl), 2005, 209:401–407 10.1007/s00429-005-0454-1, 1:CAS:528:DC%2BD2MXmtVSgu7c%3D

    Article  Google Scholar 

  42. Pisconti A, Brunelli S, Di Padova M, et al. Follistatin induction by nitric oxide through cyclic GMP: A tightly regulated signaling pathway that controls myoblast fusion. J Cell Biol, 2006, 172:233–244 10.1083/jcb.200507083, 1:CAS:528:DC%2BD28XntV2isw%3D%3D, 16401724

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sakurai H, Inami Y, Tamamura Y, et al. Bidirectional induction toward paraxial mesodermal derivatives from mouse ES cells in chemically defined medium. Stem Cell Res, 2009, 3:157–169 10.1016/j.scr.2009.08.002, 1:CAS:528:DC%2BD1MXhsFGmsb%2FE, 19726261

    Article  PubMed  Google Scholar 

  44. Schulz T J, Tseng Y H. Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev, 2009, 20:523–531 10.1016/j.cytogfr.2009.10.019, 1:CAS:528:DC%2BD1MXhsV2msL%2FK, 19896888

    Article  PubMed  PubMed Central  Google Scholar 

  45. Taha M F, Valojerdi M R, Mowla S J. Effect of bone morphogenetic protein-4 (BMP-4) on adipocyte differentiation from mouse embryonic stem cells. Anat Histol Embryol, 2006, 35:271–278 10.1111/j.1439-0264.2006.00680.x, 1:STN:280:DC%2BD28vhsFakug%3D%3D, 16836593

    Article  PubMed  Google Scholar 

  46. Heng B C, Cao T, Lee E H. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells, 2004, 22:1152–1167 10.1634/stemcells.2004-0062, 15579636

    Article  PubMed  Google Scholar 

  47. Heng B C, Cao T, Stanton L W, et al. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res, 2004, 19:1379–1394 10.1359/JBMR.040714, 1:CAS:528:DC%2BD2cXotVGqtLw%3D, 15312238

    Article  PubMed  Google Scholar 

  48. Kramer J, Hegert C, Guan K, et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: Activation by BMP-2 and BMP-4. Mech Dev, 2000, 92:193–205 10.1016/S0925-4773(99)00339-1, 1:CAS:528:DC%2BD3cXhvV2ksLs%3D, 10727858

    Article  PubMed  Google Scholar 

  49. Hajare M, Delphine C, Youssef H, et al. Osteogenic differentiation of ES cell-derived EBs mediated by embedded BMP-2 and TGF-beta-1 in a polyelectrolyte multilayer film. In: M. Firestone J S, N. Malmstadt eds. Mater Res Soc Symp Proc 950E. Warrendale, PA, 2007:0950-D0910-0904

  50. Zaret K S, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science, 2008, 322:1490–1494 10.1126/science.1161431, 1:CAS:528:DC%2BD1cXhsVGltbzM, 19056973

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang D, Jiang W, Shi Y, et al. Generation of pancreatic islet cells from human embryonic stem cells. Sci China C-Life Sci, 2009, 52:615–621 10.1007/s11427-009-0095-3, 19641866

    Article  PubMed  Google Scholar 

  52. Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res, 2009, 19: 429–438 10.1038/cr.2009.28, 1:CAS:528:DC%2BD1MXktVSlsbw%3D, 19255591

    Article  PubMed  Google Scholar 

  53. Gouon-Evans V, Boussemart L, Gadue P, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol, 2006, 24:1402–1411 10.1038/nbt1258, 1:CAS:528:DC%2BD28XhtFyqtLzO, 17086172

    Article  PubMed  Google Scholar 

  54. Soto-Gutierrez A, Kobayashi N, Rivas-Carrillo J D, et al. Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol, 2006, 24: 1412–1419 10.1038/nbt1257, 1:CAS:528:DC%2BD28XhtFyqtLzN, 17086173

    Article  PubMed  Google Scholar 

  55. Erlebacher A, Price K A, Glimcher L H. Maintenance of mouse trophoblast stem cell proliferation by TGF-beta/activin. Dev Biol, 2004, 275:158–169 10.1016/j.ydbio.2004.07.032, 1:CAS:528:DC%2BD2cXot1Wku7Y%3D, 15464579

    Article  PubMed  Google Scholar 

  56. Schulz L C, Ezashi T, Das P, et al. Human embryonic stem cells as models for trophoblast differentiation. Placenta, 2008, 29 Suppl A:S10–16 10.1016/j.placenta.2007.10.009

    Article  Google Scholar 

  57. Ichida J K, Blanchard J, Lam K, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 2009, 5:491–503 10.1016/j.stem.2009.09.012, 1:CAS:528:DC%2BD1MXhsFKltLvE, 19818703

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lin T, Ambasudhan R, Yuan X, et al. A chemical platform for improved induction of human iPSCs. Nat Methods, 2009, 6:805–808 10.1038/nmeth.1393, 1:CAS:528:DC%2BD1MXht1OgsrzE, 19838168

    Article  PubMed  PubMed Central  Google Scholar 

  59. Maherali N, Hochedlinger K. Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol, 2009, 19:1718–1723 10.1016/j.cub.2009.08.025, 1:CAS:528:DC%2BD1MXhtlCrsrvI, 19765992

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Guang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, T., Chen, YG. Regulation of embryonic stem cell self-renewal and differentiation by TGF-β family signaling. Sci. China Life Sci. 53, 497–503 (2010). https://doi.org/10.1007/s11427-010-0096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0096-2

Keywords

Navigation