Skip to main content
Log in

Advanced oxidation protein products decrease expression of nephrin and podocin in podocytes via ROS-dependent activation of p38 MAPK

Science China Life Sciences Aims and scope Submit manuscript

Abstract

Accumulation of plasma advanced oxidation protein products (AOPPs) promotes progression of proteinuria and glomerulosclerosis. To investigate the molecular basis of AOPPs-induced proteinuria, normal Sprague-Dawley rats were treated with AOPPs-modified rat serum albumin. The expression of glomerular podocyte slit diaphragm (PSD)-associated proteins, nephrin and podocin, was significantly decreased coincident with the onset of albuminuria in rats treated with AOPPs. Chronic inhibition of NADPH oxidase by apocynin prevented down-regulation of nephrin and podocin and decreased albuminuria in AOPPs-challenged rats. This suggested that accumulation of AOPPs promotes proteinuria, possibly via down-regulating the expression of PSD-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. de Zeeuw D, Remuzzi G, Parving H H, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: Lessons from RENAAL. Kidney Int, 2004, 65: 2309–2320, 10.1111/j.1523-1755.2004.00653.x, 15149345

    Article  PubMed  Google Scholar 

  2. Huby A C, Rastaldi M P, Caron K, et al. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin. PLoS One, 2009, 4: e6721, 10.1371/journal.pone.0006721, 19696925

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xing Y, Ding J, Fan Q, et al. Diversities of podocyte molecular changes induced by different antiproteinuria drugs. Exp Biol Med, 2006, 231: 585–593, 1:CAS:528:DC%2BD28XktlCqsLw%3D

    Article  CAS  Google Scholar 

  4. Mao J, Zhang Y, Du L, et al. Expression profile of nephrin, podocin, and CD2AP in Chinese children with MCNS and IgA nephropathy. Pediatr Nephrol, 2006, 21: 1666–1675, 10.1007/s00467-006-0218-z, 16941146

    Article  PubMed  Google Scholar 

  5. Li H Y, Hou F F, Zhang X, et al. Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. J Am Soc Nephrol, 2007, 18: 528–538, 10.1681/ASN.2006070781, 1:CAS:528:DC%2BD2sXit12ju7s%3D, 17202414

    Article  CAS  PubMed  Google Scholar 

  6. Shi X Y, Hou F F, Niu H X, et al. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology, 2008, 149: 1829–1839, 10.1210/en.2007-1544, 1:CAS:528:DC%2BD1cXktVeqsL8%3D, 18174276

    Article  CAS  PubMed  Google Scholar 

  7. Scamps-Latscha B, Witko-Sarsat V, Nguyen-Khoa T, et al. Early prediction of IgA nephropathy progression: Proteinuria and AOPP are strong prognostic markers. Kidney Int, 2004, 66: 1606–1612, 10.1111/j.1523-1755.2004.00926.x

    Article  Google Scholar 

  8. Huber T B, Benzing T. The slit diaphragm: A signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens, 2005, 14: 211–216, 10.1097/01.mnh.0000165885.85803.a8, 15821412

    Article  PubMed  Google Scholar 

  9. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-delta delta C(T)) method. Methods, 2001, 25: 402–408, 10.1006/meth.2001.1262, 1:CAS:528:DC%2BD38XhtFelt7s%3D, 11846609

    Article  CAS  PubMed  Google Scholar 

  10. Saleem M A, O’Hare M J, Reiser J, et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol, 2002, 13: 630–638, 1:CAS:528:DC%2BD38Xit1Wrt74%3D, 11856766

    CAS  PubMed  Google Scholar 

  11. Bass D A, Parce J W, Dechatelet L R, et al. Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation. J Immunol, 1983, 130: 1910–1917, 1:CAS:528:DyaL3sXhslOgu78%3D, 6833755

    CAS  PubMed  Google Scholar 

  12. Wei X F, Zhou Q G, Hou F F, et al. Advanced oxidation protein products induce mesangial cells perturbation through PKC-dependent activation of NADPH oxidase. Am J Physiol Renal Physiol, 2009, 296: F427–F437, 10.1152/ajprenal.90536.2008, 1:CAS:528:DC%2BD1MXitVeju70%3D, 19019916

    Article  CAS  PubMed  Google Scholar 

  13. Kalousova M, Skrha J, Zima T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol Res, 2002, 51: 597–604, 1:CAS:528:DC%2BD3sXhs1yrtLo%3D, 12511184

    CAS  PubMed  Google Scholar 

  14. Kawachi H, Koike H, Kurihara H, et al. Cloning of rat nephrin: Expression in developing glomeruli and in proteinuric states. Kidney Int, 2000, 57: 1949–1961, 10.1046/j.1523-1755.2000.00044.x, 1:CAS:528:DC%2BD3cXjsFChsrk%3D, 10792613

    Article  CAS  PubMed  Google Scholar 

  15. Reiser J, Kriz W, Kretzler M, et al. The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol, 2000, 11: 1–8, 1:STN:280:DC%2BD3c%2FotlWhtg%3D%3D, 10616834

    CAS  PubMed  Google Scholar 

  16. Ruotsalainen V, Ljungberg P, Wartiovaara J, et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci USA, 1999, 96: 7962–7967, 10.1073/pnas.96.14.7962, 1:CAS:528:DyaK1MXltVOkurk%3D, 10393930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saleem M A, Ni L, Witherden I, et al. Co-localization of nephrin, podocin, and the actin cytoskeleton: Evidence for a role in podocyte foot process formation. Am J Pathol, 2002, 1161: 1459–1466, 1:CAS:528:DC%2BD38Xotl2jtrs%3D, 12368218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Susztak k, Raff A C, Schiffer M, et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 2006, 55: 225–233, 10.2337/diabetes.55.01.06.db05-0894, 1:CAS:528:DC%2BD28XlvVSktQ%3D%3D, 16380497

    Article  CAS  PubMed  Google Scholar 

  19. Nistala R, Whaley-Connell A, Sowers J R. Redox control of renal function and hypertension. Antioxid Redox Signal, 2008, 10: 2047–2089, 10.1089/ars.2008.2034, 1:CAS:528:DC%2BD1cXhtFKlsL%2FP, 18821850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koshikawa M, Mukoyama M, Mori K, et al. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. J Am Soc Nephrol, 2005, 16: 2690–2701, 10.1681/ASN.2004121084, 1:CAS:528:DC%2BD2MXhtFeisLrK, 15987752

    Article  CAS  PubMed  Google Scholar 

  21. Lim A K, Nikolic-Paterson D J, Ma F Y, et al. Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice. Diabetologia, 2009, 52: 347–358, 10.1007/s00125-008-1215-5, 1:CAS:528:DC%2BD1MXjvFGjuw%3D%3D, 19066844

    Article  CAS  PubMed  Google Scholar 

  22. Huber T B, Benzing T. The slit diaphragm:a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens, 2005, 14: 211–216, 10.1097/01.mnh.0000165885.85803.a8, 15821412

    Article  PubMed  Google Scholar 

  23. Kalousová M, Skrha J, Zima T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol Res, 2002, 51: 597–604, 12511184

    PubMed  Google Scholar 

  24. Atabek M E, Keskin M, Yazici C, et al. Protein oxidation in obesity and insulin resistance. Eur J Pediatr, 2006, 165: 753–756, 10.1007/s00431-006-0165-5, 1:CAS:528:DC%2BD28XpvVarurw%3D, 16710733

    Article  CAS  PubMed  Google Scholar 

  25. Scamps-Latscha B, Witko-Sarsat V, Nguyen-Khoa T, et al. Early prediction of IgA nephropathy progression: Proteinuria and AOPP are strong prognostic markers. Kidney Int, 2004, 66: 1606–1612, 10.1111/j.1523-1755.2004.00926.x

    Article  Google Scholar 

  26. Roselli S, Heidet L, Sich M, et al. Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Mol Cell Biol, 2004, 24: 550–560, 10.1128/MCB.24.2.550-560.2004, 1:CAS:528:DC%2BD2cXktVymsQ%3D%3D, 14701729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mollet G, Ratelade J, Boyer O, et al. Podocin inactivation in mature kidneys causes focal segmental glomerulosclerosis and nephrotic syndrome. J Am Soc Nephrol, 2009, 20: 2181–2189, 10.1681/ASN.2009040379, 1:CAS:528:DC%2BD1MXhtlSrsbfN, 19713307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li J J, Kwak S J, Jung D S, et al. Podocyte biology in diabetic nephropathy. Kidney Int, 2007, 72: S36–S42, 10.1038/sj.ki.5002384

    Article  Google Scholar 

  29. Guo Z J, Niu H X, Hou F F, et al. Advanced oxidation protein products activate vascular endothelial cells via a RAGE-mediated signaling pathway. Antioxid Redox Signal, 2008, 10: 1699–1712, 10.1089/ars.2007.1999, 1:CAS:528:DC%2BD1cXpvFGru70%3D, 18576917

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FanFan Hou.

Additional information

Contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Liang, M., Zhou, Q. et al. Advanced oxidation protein products decrease expression of nephrin and podocin in podocytes via ROS-dependent activation of p38 MAPK. Sci. China Life Sci. 53, 68–77 (2010). https://doi.org/10.1007/s11427-010-0014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0014-7

Keywords

Navigation