Skip to main content
Log in

Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.)

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) are a class of endogenous, non-coding, short (∼21 nt) RNAs directly involved in regulating gene expression at the post-transcriptional level. Previous reports have noted that plant miRNAs in the plant kingdom are highly conserved, which provides the foundation for identification of conserved miRNAs in other plant species through homology alignment. Conserved miRNAs in wheat are identified using EST (Expressed Sequence Tags) and GSS analysis. All previously known miRNAs in other plant species were blasted against wheat EST and GSS sequences to select novel miRNAs in wheat by a series of filtering criteria. From a total of 37 conserved miRNAs belonging to 18 miRNA families 10 conserved miRNAs comprising 4 families were reported in wheat. MiR395 is found to be a special family, because three members belonging to the same miR395 family are clustered together, similar to animal miRNAs. MiRNA targets are transcription factors involved in wheat growth and development, metabolism,and stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartel D P. microRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281–297, 10.1016/S0092-8674(04)00045-5, 1:CAS:528:DC%2BD2cXhtVals7o%3D, 14744438

    Article  PubMed  CAS  Google Scholar 

  2. Jones-Rhoades M W, Bartel D P, Bartel B. microRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57: 19–53, 10.1146/annurev.arplant.57.032905.105218, 1:CAS:528:DC%2BD28XosVKhsb0%3D, 16669754

    Article  PubMed  CAS  Google Scholar 

  3. Papp I, Mette M F, Aufsatz W, et al. Evidence for nuclear processing plant microRNA and short interfering precursors. Plant Physiol, 2003, 132: 1382–1390, 10.1104/pp.103.021980, 1:CAS:528:DC%2BD3sXlsFGhtbg%3D, 12857820

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Park M Y, Wu G, Gonzalez-Sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acid Sci USA, 2005, 102: 3691–3696, 10.1073/pnas.0405570102, 1:CAS:528:DC%2BD2MXisVOgsbw%3D

    Article  CAS  Google Scholar 

  5. Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of microRNAs from moss. Plant J, 2005, 43: 837–848, 10.1111/j.1365-313X.2005.02499.x, 1:CAS:528:DC%2BD2MXhtVKqtrvK, 16146523

    Article  PubMed  CAS  Google Scholar 

  6. Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16: 2001–2019, 10.1105/tpc.104.022830, 1:CAS:528:DC%2BD2cXmvVansb0%3D, 15258262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Sunkar R, Girke T, Jain P K, et al. Cloning and characterization of microRNAs from rice. Plant Cell, 2005, 17: 1397–1411, 10.1105/tpc.105.031682, 1:CAS:528:DC%2BD2MXksVKksrc%3D, 15805478

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Zhang B H, Pan X P, Cannon C H, et al. Conservation and divergence of plant microRNA genes. Plant J, 2006, 46: 243–259, 10.1111/j.1365-313X.2006.02697.x, 1:CAS:528:DC%2BD28XksVWntrk%3D, 16623887

    Article  PubMed  CAS  Google Scholar 

  9. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843–854, 10.1016/0092-8674(93)90529-Y, 1:CAS:528:DyaK2cXpslGqtA%3D%3D, 8252621

    Article  PubMed  CAS  Google Scholar 

  10. Brown J R, Sanseau P. A computational view of microRNAs and their targets. Drug Discov Today, 2005, 10: 595–601, 10.1016/S1359-6446(05)03399-4, 1:CAS:528:DC%2BD2MXjtlahtL4%3D, 15837603

    Article  PubMed  CAS  Google Scholar 

  11. Lu S, Sun Y H, Shi R, et al. Novel and mechanical stress-responsive micrornas in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 2005, 17: 2186–2203, 10.1105/tpc.105.033456, 1:CAS:528:DC%2BD2MXpsFGjs7Y%3D, 15994906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Moxon S J, Szittya R C, Schwach G, et al. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res, 2008, 18: 1602–1609, 10.1101/gr.080127.108, 1:CAS:528:DC%2BD1cXht1elu7%2FF, 18653800

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Qiu D Y, Pan X P, Wilson W I, et al. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene, 2009, 436: 37–44, 10.1016/j.gene.2009.01.006, 1:CAS:528:DC%2BD1MXjsVCgsbY%3D, 19393185

    Article  PubMed  CAS  Google Scholar 

  14. Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004, 14: 787–799, 10.1016/j.molcel.2004.05.027, 1:CAS:528:DC%2BD2cXlslemtrs%3D, 15200956

    Article  PubMed  CAS  Google Scholar 

  15. Wang X J, Reyes J L, Chua N H, et al. Prediction and identification of Arabidopsis thaliana microRNAs and their targets. Genome Biol, 2004, 5: R65, 10.1186/gb-2004-5-9-r65, 15345049

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bonnet E, Wuyts J, Rouze P, et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important targets. Proc Natl Acad Sci USA, 2004, 101: 11511–11516, 10.1073/pnas.0404025101, 1:CAS:528:DC%2BD2cXmvVKgu7g%3D, 15272084

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Zhang B H, Pan X P, Wang Q L, et al. Identification and characterization of now plant microRNAs using EST analysis. Cell Res, 2005, 15: 336–360, 10.1038/sj.cr.7290302, 15916721

    Article  PubMed  Google Scholar 

  18. Zhang B H, Pan X P, Anderson T A. Identification of 188 conserved maize microRNAs and their targets. FEBS Lett, 2006, 580: 3753–3762, 10.1016/j.febslet.2006.05.063, 1:CAS:528:DC%2BD28XmtVOmurg%3D, 16780841

    Article  PubMed  CAS  Google Scholar 

  19. Qiu C X, Xie F L, Zhu Y Y, et al. Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene, 2007, 395: 49–61, 10.1016/j.gene.2007.01.034, 1:CAS:528:DC%2BD2sXkvFWqsr8%3D, 17408884

    Article  PubMed  CAS  Google Scholar 

  20. Jin W, Li N, Zhang B, et al. Identification and verification of microRNA in wheat (Triticum aestivum). J Plant Res, 2008, 121: 351–355, 10.1007/s10265-007-0139-3, 1:CAS:528:DC%2BD1cXls1KltLg%3D, 18357413

    Article  PubMed  CAS  Google Scholar 

  21. Yao Y, Guo G, Ni Z, et al. Cloning and characterization of microRNAs from wheat (Tricitum aestivum L.). Genome Biol, 2007, 8: R96, 10.1186/gb-2007-8-6-r96, 17543110

    Article  PubMed Central  PubMed  Google Scholar 

  22. Dryanova A, Zakharov A, Gulick P J. Data mining for miRNAs and their targets in the Triticeae. Genome, 2008, 51: 433–443, 10.1139/G08-025, 1:CAS:528:DC%2BD1cXmsVOjurk%3D, 18521122

    Article  PubMed  CAS  Google Scholar 

  23. Griffiths-Jones S, Grocock R J, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006, 34: D140–D144, 10.1093/nar/gkj112, 1:CAS:528:DC%2BD28XisFyhtw%3D%3D, 16381832

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003, 31: 3406–3415, 10.1093/nar/gkg595, 1:CAS:528:DC%2BD3sXltVWisr8%3D, 12824337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Meyers B C, Axtell M J, Bartel B, et al. Criteria for annotation of plant microRNAs. Plant Cell, 2008, 20: 3186–3190, 10.1105/tpc.108.064311, 1:CAS:528:DC%2BD1MXitVartbo%3D, 19074682

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res, 1988, 16: 10881–10890, 10.1093/nar/16.22.10881, 1:CAS:528:DyaL1MXjsVOqtA%3D%3D, 2849754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Zhang B H, Pan X P, Cox B, et al. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci, 2006, 63: 246–254, 10.1007/s00018-005-5467-7, 1:CAS:528:DC%2BD28Xhs1Gnt7k%3D, 16395542

    Article  PubMed  CAS  Google Scholar 

  28. Yu J, Wang F, Yang G H, et al. Human microRNA clusters: Genomic organization and expression profile in leukemina cell lines. Biochem Biophys Res Commun, 2006, 349: 59–68, 10.1016/j.bbrc.2006.07.207, 1:CAS:528:DC%2BD28XpsVKqsLs%3D, 16934749

    Article  PubMed  CAS  Google Scholar 

  29. Talmor-Neiman M, Stva R, Framk W, et al. Novel microRNAs and intermediates of microRNA biogenesis from moss. Plant J, 2006, 47: 25–37, 10.1111/j.1365-313X.2006.02768.x, 1:CAS:528:DC%2BD28XnvFaltbs%3D, 16824179

    Article  PubMed  CAS  Google Scholar 

  30. Lu S, Sun Y H, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J, 2007, 51: 1077–1098, 10.1111/j.1365-313X.2007.03208.x, 1:CAS:528:DC%2BD2sXhtFKnur7F, 17635765

    Article  PubMed  CAS  Google Scholar 

  31. Allen E, Xie Z, Gustafson A M, et al. MicroRNA-directed phrasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121: 207–221, 10.1016/j.cell.2005.04.004, 1:CAS:528:DC%2BD2MXjvV2jtb4%3D, 15851028

    Article  PubMed  CAS  Google Scholar 

  32. Guo H S, Xie Q, Fei J F, et al. microRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 2005, 17: 1376–1386, 10.1105/tpc.105.030841, 1:CAS:528:DC%2BD2MXksVKksrk%3D, 15829603

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Mallory A C, Bartel D P. microRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulate expression of early auxin response genes. Plant Cell, 2005, 17: 1360–1375, 10.1105/tpc.105.031716, 1:CAS:528:DC%2BD2MXksVKksrg%3D, 15829600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425: 257–263, 10.1038/nature01958, 1:CAS:528:DC%2BD3sXntlWns7w%3D, 12931144

    Article  PubMed  CAS  Google Scholar 

  35. Lee Y, Kim M, Han J, et al. microRNA genes are transcribed by RNA polymerase II. EMBO J, 2004, 23: 4051–4060, 10.1038/sj.emboj.7600385, 1:CAS:528:DC%2BD2cXotlCrsrs%3D, 15372072

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets. Cell, 2002, 110: 513–520, 10.1016/S0092-8674(02)00863-2, 1:CAS:528:DC%2BD38Xmslyjt7s%3D, 12202040

    Article  PubMed  CAS  Google Scholar 

  37. Bartel B, Bartel D P. microRNAs: at the root of plant development. Plant Physiol, 2003, 132: 709–717, 10.1104/pp.103.023630, 1:CAS:528:DC%2BD3sXkslertro%3D, 12805599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022–2025, 10.1126/science.1088060, 1:CAS:528:DC%2BD2cXisVGlt7g%3D, 12893888

    Article  PubMed  CAS  Google Scholar 

  39. Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 2003, 15: 2730–2741, 10.1105/tpc.016238, 1:CAS:528:DC%2BD3sXpt1OrurY%3D, 14555699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Park W, Li J, Song R, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Bio, 2002, 12: 1484–1495, 10.1016/S0960-9822(02)01017-5, 1:CAS:528:DC%2BD38XntVaisb4%3D

    Article  CAS  Google Scholar 

  41. Mallory A C, Dugas D V, Bartel D P, et al. microRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol, 2004, 14: 1035–1046, 10.1016/j.cub.2004.06.022, 1:CAS:528:DC%2BD2cXltVOgtLg%3D, 15202996

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BenZhong Zhu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30600421 and 30430490) and the National High Technology Research and Development Program of China (Grant No. 2006BAD22BO1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Luan, F., Zhu, H. et al. Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.). SCI CHINA SER C 52, 1091–1100 (2009). https://doi.org/10.1007/s11427-009-0144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0144-y

Keywords

Navigation