Skip to main content
Log in

Event-related potentials in a Go/Nogo task of abnormal response inhibition in heroin addicts

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Inhibitory control dysfunction is regarded as a core feature in addicts. The major objective of this study was to explore the time course of response inhibition in chronic heroin addicts and provide the neurophysiological evidence of their inhibitory control dysfunction. The amplitudes and latencies of ERP components were studied in fourteen heroin addicts (mean duration of heroin use being (13.54±5.71) years (Mean±SD), average abstinence being ((4.67±6.44) months)) and fourteen matched healthy controls with a visual Go/Nogo task. Our results showed that heroin addicts demonstrated significantly larger Go-N2 amplitudes which results in a decreased N2 Go/Nogo effect, but no statistically significant differences were found between heroin addicts and controls in P3. The ERP data suggest that fronto-central areas of heroin addicts were impaired during the inhibition process (200–300 ms) and over-activated to targets. The impaired early process might reflect an abnormal conflict monitoring process in heroin addicts. These results consolidate the inhibitory control dysfunction hypothesis in chronic heroin users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Garavan H, Ross T J, Stein E A. Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proc Natl Acad Sci USAH, 1999, 96: 8301–8306 10.1073/pnas.96.14.8301, 1:CAS:528:DyaK1MXltVOrtrg%3D

    Article  CAS  Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (4th ed). Washington DC: American Psychiatric Association. 1994

    Google Scholar 

  3. Jentsch J D, Taylor J R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology, 1999, 146: 373–390 10550488, 10.1007/PL00005483, 1:CAS:528:DyaK1MXnvVansLs%3D

    Article  CAS  PubMed  Google Scholar 

  4. Goldstein R Z, Volkow N D. Drug addiction and it’s underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiat, 2002, 159: 1642–1652 12359667, 10.1176/appi.ajp.159.10.1642

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ersche K D, Sahakian B J. The neuropsychology of amphetamine and opiate dependence: Implications for treatment. Neuropsychol Rev, 2007, 17: 317–336 17690986, 10.1007/s11065-007-9033-y

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aron A R. The neural basis of inhibition in cognitive control. Neuroscientist, 2007, 13: 214–228 17519365, 10.1177/1073858407299288

    Article  PubMed  Google Scholar 

  7. Pau C W H, Lee T M C, Chan S F. The impact of heroin on frontal executive functions. Arch Clin Neuropsych, 2002, 17: 663–670

    Article  Google Scholar 

  8. Lu Y. The Function of Heroin Abstinents’ Behavior Inhibition and Dynamic Characteristics (in Chinese). Dissertation for the Master degree, Kunming: Yunnan Normal University, 2006: 13–15

    Google Scholar 

  9. Verdejo-Garacia A J, Perales J C, Perez-Garcia M. Cognitive impulsivity in cocaine and heroin polysubstance abuses. Addict Behav, 2007, 32: 950–966 10.1016/j.addbeh.2006.06.032

    Article  Google Scholar 

  10. Fishbein D H, Krupitsky E, Flannery B A, et al. Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug Alcohol Depen, 2007, 90: 25–38 10.1016/j.drugalcdep.2007.02.015

    Article  Google Scholar 

  11. Rubia K, Russell T, Overmeyer S, et al. Mapping motor inhibition: conjunctive brain activations across different versions of Go/No-Go and stop tasks. NeuroImage, 2001, 13: 250–261 11162266, 10.1006/nimg.2000.0685, 1:STN:280:DC%2BD3M7ptlClsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  12. Lyoo I K, Pollack M H, Silveri M M, et al. Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology, 2006, 184: 139–144 16369836, 10.1007/s00213-005-0198-x, 1:CAS:528:DC%2BD28XksVOhsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  13. Haselhorst R, Dürsteler-MacFarland K M, Scheffler M A K, et al. Frontocortical N-acetylaspartate reduction associated with long-term IV heroin use. Neurology, 2002, 58: 305–307 11805264, 1:CAS:528:DC%2BD38XhtVyksL0%3D

    Article  CAS  PubMed  Google Scholar 

  14. Lee T M C, Zhou W H, Lou X J, et al. Neural activity associated with cognitive regulation in heroin users: a fMRI study. Neurosci Lett, 2005, 382: 211–216 15925092, 10.1016/j.neulet.2005.03.053, 1:CAS:528:DC%2BD2MXltVenurc%3D

    Article  CAS  PubMed  Google Scholar 

  15. Fu L P, Bi G H, Zou Z T, et al. Impaired response inhibition function in abstinent heroin dependents: An fMRI study. Neurosci Lett, 2008, 438: 322–326 18485592, 10.1016/j.neulet.2008.04.033, 1:CAS:528:DC%2BD1cXmsFKrurs%3D

    Article  CAS  PubMed  Google Scholar 

  16. Bauer L O. CNS recovery from cocaine, cocaine and alcohol, or opioid dependence: a P300 study. Clin Neurophysiol, 2001, 112: 1508–1515 11459691, 10.1016/S1388-2457(01)00583-1, 1:CAS:528:DC%2BD3MXmsVyltLw%3D

    Article  CAS  PubMed  Google Scholar 

  17. Papageorgiou C C, Liappas I A, Ventouras E M, et al. Long-term abstinence syndrome in heroin addicts: indices of P300 alterations associated with a short memory task. Prog Neuropsychopharmacol Biol Psychiatry, 2004, 28: 1109–1115 15610923, 10.1016/j.pnpbp.2004.05.049, 1:CAS:528:DC%2BD2cXhtFahsL3M

    Article  CAS  PubMed  Google Scholar 

  18. Logan G D, Cowan W B, Davis K A. On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform, 1984, 10: 276–291 6232345, 10.1037/0096-1523.10.2.276, 1:STN:280:DyaL2c7oslCnsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  19. Pfefferbaum A, Ford J M, Weller B J, et al. ERPs to response production and inhibition. Electroencephalogr Clin Neurophysiol, 1985, 60: 423–434 2580694, 10.1016/0013-4694(85)91017-X, 1:STN:280:DyaL2M7nvFajsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  20. Ruchsow M, Groen G, Kiefer M. Response inhibition in borderline personality disorder: event-related potentials in a Go/Nogo task. J Neural Transm, 2008, 115: 127–133 17885723, 10.1007/s00702-007-0819-0, 1:STN:280:DC%2BD1c%2FgsV2hsw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  21. Goldstein M, Brendel G, Tuescher, O, et al. Neural substrates of the interaction of emotional stimulus processing and motor inhibitory control: An emotional linguistic go/no-go fMRI study. NeuroImage, 2007, 36: 1026–1040 17509899, 10.1016/j.neuroimage.2007.01.056

    Article  PubMed  Google Scholar 

  22. Falkenstein M, Hoormann J, Hohnsbein J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica, 1999, 101: 267–291 10344188, 10.1016/S0001-6918(99)00008-6, 1:STN:280:DyaK1M3nsFKmtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  23. Kopp B, Mattler U, Goertz R, et al. N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalogr Clin Neurophysiol, 1996, 99: 19–27 8758967, 1:STN:280:DyaK28zht12gtQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  24. Bokura H, Yamaguchi S, Kobayashi S. Electrophsiological correlates for response inhibition in a Go/Nogo task. Clin Neurophysiol, 2001, 113: 2224–2232 10.1016/S1388-2457(01)00691-5

    Article  Google Scholar 

  25. Kim M S, Kim Y Y, Yoo S Y, et al. Electrophysiological correlates of behavioral response inhibition in patients with obsessive-compulsive disorder. Depress Anxiety, 2007, 24: 22–31 16933318, 10.1002/da.20195

    Article  PubMed  Google Scholar 

  26. Nieuwenhuis S, Yeung N, van den Wildenberg, et al. Electrophysiological correlates of anterior cingulated function in a go/nogo task: effects of response conflict and trial type frequency. Cognit Affect Behav Neurosci, 2003, 3: 17–26 10.3758/CABN.3.1.17

    Article  Google Scholar 

  27. Donkers F C, van Boxtel G J. The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain Cogn, 2004, 56: 165–176 15518933

    Article  PubMed  Google Scholar 

  28. Bruin K J, Wijers A A. Inhibition, response mode, and stimulus probability: a comparative event-related potential study. Clin Neurophysiol, 2002, 113: 1172–1182 12088714, 10.1016/S1388-2457(02)00141-4, 1:STN:280:DC%2BD38zksF2qsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  29. Burle B, Vidal F, Bonnet M. Electroencephalographic nogo potentials in a no-movement context: the case of motor imagery in humans. Neurosci Lett, 2004, 360: 77–80 15082183, 10.1016/j.neulet.2004.02.034, 1:CAS:528:DC%2BD2cXjtV2nt7k%3D

    Article  CAS  PubMed  Google Scholar 

  30. Salisbury D F, Griggs C B, Shenton M E, et al. The NoGo P300’ anteriorization’ effect and response inhibition. Clin Neurophysiol, 2004, 115: 1550–1558 15203056, 10.1016/j.clinph.2004.01.028

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dimoska A, Johnstone S J, Barry R J. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection? Brain Cogn, 2006, 62: 98–112 16814442, 10.1016/j.bandc.2006.03.011

    Article  PubMed  Google Scholar 

  32. Bekker E M, Kenemans J L, Verbaten M N. Source analysis of the N2 in a cued Go/NoGo task. Brain Res Cogn Brain Res, 2005, 22: 221–231 15653295, 10.1016/j.cogbrainres.2004.08.011

    Article  PubMed  Google Scholar 

  33. Strik W K, Fallgatter A J, Brandeis D, et al. Three-dimensional tomography of event-related potentials during response inhibition: Evidence for phasic frontal lobe activation. Electroencephalogr Clin Neurophysiol, 1998, 108: 406–413 9714383, 10.1016/S0168-5597(98)00021-5, 1:STN:280:DyaK1cznvVWrtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  34. Kamarajan C, Porjesz B, Jones K A, et al. Alcoholism is a disinhibitory disorder: neurophysiological evidence from a Go/No-Go task. Biol Psychol, 2005, 69: 353–373 15925035, 10.1016/j.biopsycho.2004.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gamma A, Brandeis D, Brandeis R, et al. The P3 in ‘ecstasy’ polydrug users during response inhibition and execution. J Psychopharmacol, 2005, 19: 504–512 16166188, 10.1177/0269881105056535

    Article  PubMed  Google Scholar 

  36. Lian Z, Liu Z. Reliability and development of opiate addiction severity inventory (in Chinese). Chinese Magazine of Drug Abuse Prevention and Treatment, 2003: 85–88

  37. Cheng K S, Wong C, Wong K, et al. A study of psychometric properties, normative scores and factor structure of beck anxiety inventory Chinese version. Chin J Clin Psychol, 2002: 4–6

  38. Semlitsch H V, Anderer P, Schuster P, et al. A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 1986, 23: 695–703 3823345, 10.1111/j.1469-8986.1986.tb00696.x, 1:STN:280:DyaL2s7kslyjtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  39. Geisser S, Greenhouse S W. An extension of Box’s results on the use of the F distribution in multivariate analysis. Ann Math Stat, 1958, 29: 885–891 10.1214/aoms/1177706545

    Article  Google Scholar 

  40. Fabiani F, Gratton G, Federmeier K D. Event-related brain potentials: methods, theory, and applications. In: Cacioppo J T, Tassinary L G, Berntson G G. Eds, Handbook of Psychophysiology (3rd), Cambridge: Cambridge University Press. 2007. 85–119

    Chapter  Google Scholar 

  41. Lyoo I K, Pollack M H, Silveri M M, et al. Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology, 2006, 184: 139–44 16369836, 10.1007/s00213-005-0198-x, 1:CAS:528:DC%2BD28XksVOhsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  42. Haselhorst R, Dursteler-MacFarland K M, Scheffler K M, et al. Frontocortical N-acetylaspartate reduction associated with long-term IV heroin use. Neurology, 2002, 58: 305–307 11805264, 1:CAS:528:DC%2BD38XhtVyksL0%3D

    Article  CAS  PubMed  Google Scholar 

  43. Xia J, Zhou Y, Yang B, et al. A clinical MR spectroscopy study of heroin-induced brain damage (in Chinese). Central China Medical Journal, 2004: 227–228

  44. Dawe S, Gullo M J, Loxton N J. et al. Reward drive and rash impulsiveness as dimensions of impulsivity: implications for substance misuse. Addict Behav, 2004, 29: 1389–1405 15345272, 10.1016/j.addbeh.2004.06.004

    Article  PubMed  Google Scholar 

  45. Dimoska A, Johnstone S J. Neural mechanisms underlying trait impulsivity in non-clinical adults: Stop-signal performance and event-related potentials. Prog Neuro-Psychoph, 2007, 31: 443–454 10.1016/j.pnpbp.2006.11.009

    Article  Google Scholar 

  46. Ruchsow M, Groen G, Kiefer M, et al. Impulsiveness and ERP components in a Go/Nogo task. J Neural Transm, 2008, 115: 909–915 18368285, 10.1007/s00702-008-0042-7

    Article  PubMed  Google Scholar 

  47. Chen C Y, Tien Y M, Juan C H, et al. Neural correlates of impulsive-violent behavior: an event-related potential study. Neuroreport, 2005, 16: 1213–1216 16012351, 10.1097/00001756-200508010-00016

    Article  PubMed  Google Scholar 

  48. Anokhin A P, Heath A C, Myers E. Genetics, prefrontal cortex, and cognitive control: a twin study of event-related brain potentials in a response inhibition task. Neurosci Lett, 2004, 368: 314–318 15364418, 10.1016/j.neulet.2004.07.036, 1:CAS:528:DC%2BD2cXnsFGmur8%3D

    Article  CAS  PubMed  Google Scholar 

  49. Elkins I J, King S M, McGue M, et al. Personality traits and the development of nicotine, alcohol, and illicit drug disorders: prospective links from adolescence to young adulthood. J Abnorm Psychol, 2006, 115: 26–39 16492093, 10.1037/0021-843X.115.1.26

    Article  PubMed  Google Scholar 

  50. Sinha R. The role of stress in addiction relapse. Curr Psychiatry Rep, 2007, 9: 388–395 17915078, 10.1007/s11920-007-0050-6

    Article  PubMed  Google Scholar 

  51. Jodo E, Kayama Y. Relation of a negative ERP component to response inhibition in a Go/No-go task. Electroencephalogr Clin Neurophysiol, 1992, 82: 477–482 1375556, 10.1016/0013-4694(92)90054-L, 1:STN:280:DyaK383nsVyqtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  52. Chiu P H, Holmes A J, Pizzagalli D A. Dissociable recruitment of rostral anterior cingulate and inferior frontal cortex in emotional response inhibition. NeuroImage, 2008, 42: 988–997 18556218, 10.1016/j.neuroimage.2008.04.248

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li C R, Sinha R. Inhibitory control and emotional stress regulation: Neuroimaging evidence for frontal-limbic dysfunction in psycho-stimulant addiction. Neurosci Biobehav Rev, 2008, 32: 581–597 18164058, 10.1016/j.neubiorev.2007.10.003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang.

Additional information

Contibuted equally to this work

Supported by Beijing Bureau of Reeducation-through-laber Administration (Grant NO. 2006021515)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Yang, S., Zhao, L. et al. Event-related potentials in a Go/Nogo task of abnormal response inhibition in heroin addicts. SCI CHINA SER C 52, 780–788 (2009). https://doi.org/10.1007/s11427-009-0106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0106-4

Keywords

Navigation