Skip to main content
Log in

The variable codons of H5N1 avian influenza A virus haemagglutinin genes

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

We investigated the selection pressures on the haemagglutinin genes of H5N1 avian influenza viruses using fixed effects likelihood models. We found evidence of positive selection in the sequences from isolates from 1997 to 2007, except viruses from 2000. The haemagglutinin sequences of viruses from southeast Asia, Hong Kong and mainland China were the most polymorphic and had similar nonsynonymous profiles. Some sites were positively selected in viruses from most regions and a few of these sites displayed different amino acid patterns. Selection appeared to produce different outcomes in viruses from Europe, Africa and Russia and from different host types. One position was found to be positively selected for human isolates only. Although the functions of some positively selected positions are unknown, our analysis provided evidence of different temporal, spatial and host adaptations for H5N1 avian influenza viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bush R M, Fitch W M, Bender C A, et al. Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol, 1999, 16: 1457–1465, 10555276, 1:CAS:528:DyaK1MXntlGqu7c%3D

    Article  PubMed  CAS  Google Scholar 

  2. Webster R G, Bean W J, Gorman O T, et al. Evolution and ecology of influenza A viruses. Microbiol Rev, 1992, 56: 152–179, 1579108, 1:STN:280:By2B2M3nvFM%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 2006, 444: 378–382, 17108965, 10.1038/nature05264, 1:CAS:528:DC%2BD28Xht1Sgtb7J

    Article  PubMed  CAS  Google Scholar 

  4. Fitch W M, Leiter J M E, Li X, et al. Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci USA, 1991, 88: 4270–4274, 1840695, 10.1073/pnas.88.10.4270, 1:CAS:528:DyaK3MXkt1Grtrw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Ina Y, Gojobori T. Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses. Proc Natl Acad Sci USA, 1994, 91: 8388–8392, 8078892, 10.1073/pnas.91.18.8388, 1:CAS:528:DyaK2cXlvFOjs7Y%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Campitelli L, Ciccozzi M, Salemi M, et al. H5N1 influenza virus evolution: a comparison of different epidemics in birds and humans (1997–2004). J Gen Virol, 2006, 87: 955–960, 16528045, 10.1099/vir.0.81397-0, 1:CAS:528:DC%2BD28XjsVWhu74%3D

    Article  PubMed  CAS  Google Scholar 

  7. Smith G J, Naipospos T S P, Nguyen T D. et al. Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology, 2006, 350: 258–268, 16713612, 10.1016/j.virol.2006.03.048, 1:CAS:528:DC%2BD28Xmt1Gkt74%3D

    Article  PubMed  CAS  Google Scholar 

  8. Ciccozzi M, Montieri S, Facchini M, et al. Evolutionary analysis of HA and NS1 genes of H5N1 influenza viruses in 2004–2005 epidemics. Avian Dis, 2007, 51(1 Suppl): 455–460, 17494606, 10.1637/7620-042606R.1

    Article  PubMed  Google Scholar 

  9. Nielsen R. Mapping mutations on phylogenies. Syst Biol, 2002, 51(5): 729–739, 12396587, 10.1080/10635150290102393

    Article  PubMed  Google Scholar 

  10. Suzuki Y, Gojobori T. A method for detecting positive selection at single amino acid sites. Mol Biol Evol, 1999, 16: 1315–1328, 10563013, 1:CAS:528:DyaK1MXms1Ojt70%3D

    Article  PubMed  CAS  Google Scholar 

  11. Huelsenbeck J P, Dyer K A. Bayesian estimation of positively selected sites. J Mol Evol, 2004, 58: 661–672, 15461423, 10.1007/s00239-004-2588-9, 1:CAS:528:DC%2BD2cXkvVOiu7k%3D

    Article  PubMed  CAS  Google Scholar 

  12. Nielsen R, Yang Z H. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 1998, 148: 929–936, 9539414, 1:CAS:528:DyaK1cXks1eitr8%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Yang Z H, Nielsen R, Goldman N, et al. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics, 2000, 155: 431–449, 10790415, 1:CAS:528:DC%2BD3cXjslKhtb4%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Kosakovsky Pond S L, Frost S D W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol Biol and Evol, 2005, 22: 1208–1222, 10.1093/molbev/msi105

    Article  Google Scholar 

  15. Suzuki Y. New methods for detecting positive selection at single amino acid sites. J Mol Evol, 2004, 59: 11–19, 15383903, 1:CAS:528:DC%2BD2cXlsleisLc%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Yang Z, Swanson W. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol, 2002, 19(1): 49–57, 11752189

    Article  PubMed  Google Scholar 

  17. Kosakovsky Pond S L, Frost S D W. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 2005, 21(10): 2531–2533, 10.1093/bioinformatics/bti320

    Article  Google Scholar 

  18. Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence align ment aided by quality analysis tools. Nucl Acids Res, 1997, 25: 4876–4882, 9396791, 10.1093/nar/25.24.4876, 1:CAS:528:DyaK1cXntFyntQ%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 2003, 52: 696–704, 14530136, 10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  20. Kosakovsky Pond S L, Frost S D W, Muse S V. HyPhy: hypothesis testing using phylogenies. Bioinformatics, 2005, 21: 676–679, 10.1093/bioinformatics/bti079

    Article  Google Scholar 

  21. Hasegawa M, Kishino H, Yano T A. Dating of the human ape splitting by a molecular clock of mitochondrial-DNA. J Mol Evol, 1985, 22: 160–174, 3934395, 10.1007/BF02101694, 1:CAS:528:DyaL2MXmtFSns7g%3D

    Article  PubMed  CAS  Google Scholar 

  22. Muse S V, Gaut B S. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol, 1994, 11: 715–724, 7968485, 1:CAS:528:DyaK2cXlvFOjsL8%3D

    PubMed  CAS  Google Scholar 

  23. Normile D. Avian influenza: Evidence points to migratory birds in H5N1 spread. Science, 2006, 311: 1225, 16513949, 10.1126/science.311.5765.1225, 1:CAS:528:DC%2BD28XitV2gsb8%3D

    Article  PubMed  CAS  Google Scholar 

  24. Webby R, Hoffmann E, Webster R. Molecular constrains to interspecies transmission of viral pathogens. Nature Med, 2006, 10: S77–S81

    Article  Google Scholar 

  25. Kaverin N V, Rudneva I A, Ilyushina N A, et al. Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol, 2002, 83: 2497–2505, 12237433, 1:CAS:528:DC%2BD38XnsFKgu7c%3D

    Article  PubMed  CAS  Google Scholar 

  26. Gambaryan A, Yamnikova S, Lvov D, et al. Receptor specificity of influenza viruses from birds and mammals: New data on involvement of the inner fragments of the carbohydrate chain. Virology, 2005, 334: 276–283, 15780877, 10.1016/j.virol.2005.02.003, 1:CAS:528:DC%2BD2MXisVCltbg%3D

    Article  PubMed  CAS  Google Scholar 

  27. Ilyushina N A, Rudneva I A, Gambaryan A S, et al. Receptor specificity of H5 influenza virus escapemutants. Virus Res, 2004, 100: 237–241, 15019242, 10.1016/j.virusres.2003.12.032, 1:CAS:528:DC%2BD2cXhs12ls7c%3D

    Article  PubMed  CAS  Google Scholar 

  28. Wallace R G, HoDac H, Lathrop R H, et al. A statistical phylogeography of influenza A H5N1. Proc Natl Acad Sci USA, 2007, 104: 4473–4478, 17360548, 10.1073/pnas.0700435104, 1:CAS:528:DC%2BD2sXjsFKnsbs%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WeiFeng Shi or ChaoDong Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Gibbs, M.J., Zhang, Y. et al. The variable codons of H5N1 avian influenza A virus haemagglutinin genes. SCI CHINA SER C 51, 987–993 (2008). https://doi.org/10.1007/s11427-008-0131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0131-8

Keywords

Navigation