Skip to main content
Log in

Complicated evolutionary patterns of microRNAs in vertebrates

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of ∼22 nt long endogenous non-coding RNAs that play important regulatory roles in diverse organisms. Up to now, little is known about the evolutionary properties of these crucial regulators. Most miRNAs were thought to be phylogenetically conserved, but recently, a number of poorly-conserved miRNAs have been reported and miRNA innovation is shown to be an ongoing process. In this work, through the characterization of an miRNA super family, we studied the evolutionary patterns of miRNAs in vertebrates. Recently generated miRNAs seem to evolve rapidly during a certain period following their emergence. Multiple lineage-specific expansions were observed. Homolgous premiRNAs may produce mature products from the opposite stem arms following tandem duplications, which may have important contribution to miRNA innovation. Our observations of miRNAs’ complicated evolutionary patterns support the notion that these key regulatory molecules may play very active roles in evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297, 14744438, 10.1016/S0092-8674(04)00045-5, 1:CAS:528:DC%2BD2cXhtVals7o%3D

    Article  CAS  Google Scholar 

  2. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843–854, 8252621, 10.1016/0092-8674(93)90529-Y, 1:CAS:528:DyaK2cXpslGqtA%3D%3D

    Article  CAS  Google Scholar 

  3. Griffiths-Jones S, Grocock R J, van Dongen S, et al. MiRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34(Database issue): D140–D144, 16381832, 10.1093/nar/gkj112, 1:CAS:528:DC%2BD28XisFyhtw%3D%3D

    Article  CAS  Google Scholar 

  4. Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350–355, 15372042, 10.1038/nature02871, 1:CAS:528:DC%2BD2cXnsFaiu7g%3D

    Article  CAS  Google Scholar 

  5. He L, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5(7): 522–531, 15211354, 10.1038/nrg1379, 1:CAS:528:DC%2BD2cXltVSmsbw%3D

    Article  CAS  Google Scholar 

  6. Brennecke J, Stark A, Russell R B, et al. Principles of microRNA-target recognition. PLoS Biol, 2005, 3(3): e85, 15723116, 10.1371/journal.pbio.0030085

    Article  Google Scholar 

  7. Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1): 15–20, 15652477, 10.1016/j.cell.2004.12.035, 1:CAS:528:DC%2BD2MXot1ChsA%3D%3D

    Article  CAS  Google Scholar 

  8. Pang K C, Frith M C, Mattick J S. Rapid evolution of noncoding RNAs: Lack of conservation does not mean lack of function. Trends Genet, 2006, 22(1): 1–5, 16290135, 10.1016/j.tig.2005.10.003, 1:CAS:528:DC%2BD28Xkt1Wh

    Article  CAS  Google Scholar 

  9. Hertel J, Lindemeyer M, Missal K, et al. The expansion of the metazoan microRNA repertoire. BMC Genomics, 2006, 7: 25, 16480513, 10.1186/1471-2164-7-25

    Article  Google Scholar 

  10. Sempere L F, Cole C N, McPeek M A, et al. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zoolog B Mol Dev Evol, 2006, 306(6): 575–588, 16838302, 10.1002/jez.b.21118

    Article  Google Scholar 

  11. Tanzer A, Stadler P F. Molecular evolution of a microRNA cluster. J Mol Biol, 2004, 339(2): 327–335, 15136036, 10.1016/j.jmb.2004.03.065, 1:CAS:528:DC%2BD2cXjsl2ns78%3D

    Article  CAS  Google Scholar 

  12. Tanzer A, Amemiya C T, Kim C B, et al. Evolution of microRNAs located within Hox gene clusters. J Exp Zoolog B Mol Dev Evol, 2005, 304(1): 75–85, 15643628, 10.1002/jez.b.21021

    Article  Google Scholar 

  13. Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNA families through duplication events. Genome Res, 2006, 16(4): 510–519, 16520461, 10.1101/gr.4680506, 1:CAS:528:DC%2BD28Xjs12ju78%3D

    Article  CAS  Google Scholar 

  14. Giraldez A J, Cinalli R M, Glasner M E, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science, 2005, 308(5723): 833–838, 15774722, 10.1126/science.1109020, 1:CAS:528:DC%2BD2MXjvVantrY%3D

    Article  CAS  Google Scholar 

  15. Wang X, Zhang J, Li F, et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics, 2005, 21(18): 3610–3614, 15994192, 10.1093/bioinformatics/bti562, 1:CAS:528:DC%2BD2MXpvFGqsbw%3D

    Article  CAS  Google Scholar 

  16. Berezikov E, Cuppen E, Plasterk R H. Approaches to microRNA discovery. Nat Genet, 2006, 38Suppl: S2–S7, 16736019, 10.1038/ng1794, 1:CAS:528:DC%2BD28XltVOmt7c%3D

    Article  CAS  Google Scholar 

  17. Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22(22): 4673–4680, 7984417, 10.1093/nar/22.22.4673, 1:CAS:528:DyaK2MXitlSgu74%3D

    Article  CAS  Google Scholar 

  18. Suh M R, Lee Y, Kim J Y, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol, 2004, 270(2): 488–498, 15183728, 10.1016/j.ydbio.2004.02.019, 1:CAS:528:DC%2BD2cXkslWmur4%3D

    Article  CAS  Google Scholar 

  19. Cohen S M, Brennecke J. Developmental biology. Mixed messages in early development. Science, 2006, 312(5770): 65–66, 16601183, 10.1126/science.1126400, 1:CAS:528:DC%2BD28Xjtlalurk%3D

    Article  CAS  Google Scholar 

  20. He L, Thomson J M, Hemann M T, et al. A microRNA polycistron as a potential human oncogene. Nature, 2005, 435(7043): 828–833, 15944707, 10.1038/nature03552, 1:CAS:528:DC%2BD2MXkvVGgs70%3D

    Article  CAS  Google Scholar 

  21. O’Donnell K A, Wentzel E A, Zeller K I, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005, 435(7043): 839–843, 15944709, 10.1038/nature03677, 1:CAS:528:DC%2BD2MXkvVGgsLg%3D

    Article  Google Scholar 

  22. Voorhoeve P M, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 2006, 124(6): 1169–1181, 16564011, 10.1016/j.cell.2006.02.037, 1:CAS:528:DC%2BD28Xjt1Khsrg%3D

    Article  CAS  Google Scholar 

  23. Krek A, Grun D, Poy M N, et al. Combinatorial microRNA target predictions. Nat Genet, 2005, 37(5): 495–500, 15806104, 10.1038/ng1536, 1:CAS:528:DC%2BD2MXjsF2ksrw%3D

    Article  CAS  Google Scholar 

  24. Houbaviy H B, Murray M F, Sharp P A. Embryonic stem cell-specific MicroRNAs. Develop Cell, 2003, 5(2): 351–358, 10.1016/S1534-5807(03)00227-2, 1:CAS:528:DC%2BD3sXmvVCitLg%3D

    Article  CAS  Google Scholar 

  25. Houbaviy H B, Dennis L, Jaenisch R, et al. Characterization of a highly variable eutherian microRNA gene. RNA, 2005, 11(8): 1245–1257, 15987809, 10.1261/rna.2890305, 1:CAS:528:DC%2BD2MXntFCgtLg%3D

    Article  CAS  Google Scholar 

  26. Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 2005, 37(7): 766–770, 15965474, 10.1038/ng1590, 1:CAS:528:DC%2BD2MXlslWhs7c%3D

    Article  CAS  Google Scholar 

  27. Watanabe T, Takeda A, Mise K, et al. Stage-specific expression of microRNAs during Xenopus development. FEBS Lett, 2005, 579(2): 318–324, 15642338, 10.1016/j.febslet.2004.11.067, 1:CAS:528:DC%2BD2MXitFersg%3D%3D

    Article  CAS  Google Scholar 

  28. Chen P Y, Manninga H, Slanchev K, et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev, 2005, 19(11): 1288–1293, 15937218, 10.1101/gad.1310605, 1:CAS:528:DC%2BD2MXlt1ynu7c%3D

    Article  CAS  Google Scholar 

  29. Giraldez A J, Mishima Y, Rihel J, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 2006, 312(5770): 75–79, 16484454, 10.1126/science.1122689, 1:CAS:528:DC%2BD28XjtFalsbo%3D

    Article  CAS  Google Scholar 

  30. Levine M, Tjian R. Transcription regulation and animal diversity. Nature, 2003, 424(6945): 147–151, 12853946, 10.1038/nature01763, 1:CAS:528:DC%2BD3sXlt1CktLw%3D

    Article  CAS  Google Scholar 

  31. Elango N, Thomas J W, Yi S V. Variable molecular clocks in hominoids. Proc Natl Acad Sci USA, 2006, 103(5): 1370–1375, 16432233, 10.1073/pnas.0510716103, 1:CAS:528:DC%2BD28Xhs1Ggu7Y%3D

    Article  CAS  Google Scholar 

  32. Lai E C, Wiel C, Rubin G M. Complementary miRNA pairs suggest a regulatory role for miRNA: miRNA duplexes. RNA, 2004, 10(2): 171–175, 14730015, 10.1261/rna.5191904, 1:CAS:528:DC%2BD2cXpsVSisA%3D%3D

    Article  CAS  Google Scholar 

  33. Khvorova A, Reynolds A, Jayasena S D. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003, 115(2): 209–216, 14567918, 10.1016/S0092-8674(03)00801-8, 1:CAS:528:DC%2BD3sXosFCqsLs%3D

    Article  CAS  Google Scholar 

  34. Schwarz D S, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115(2): 199–208, 14567917, 10.1016/S0092-8674(03)00759-1, 1:CAS:528:DC%2BD3sXosFCqsLo%3D

    Article  CAS  Google Scholar 

  35. Kim V N. MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol, 2005, 6(5): 376–385, 15852042, 10.1038/nrm1644, 1:CAS:528:DC%2BD2MXjvF2jsLg%3D

    Article  CAS  Google Scholar 

  36. Berezikov E, Thuemmler F, van Laake L W, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet, 2006, 38(12): 1375–1377, 17072315, 10.1038/ng1914, 1:CAS:528:DC%2BD28Xht1CntrbE

    Article  CAS  Google Scholar 

  37. Farh K K, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 2005, 310(5755): 1817–1821, 16308420, 10.1126/science.1121158, 1:CAS:528:DC%2BD2MXhtlSntbzL

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanDa Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30625012, 60572086 and 60775002), and National Basic Research Program of China (Grant No. 2004CB518605)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhang, X. & Li, Y. Complicated evolutionary patterns of microRNAs in vertebrates. SCI CHINA SER C 51, 552–559 (2008). https://doi.org/10.1007/s11427-008-0075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0075-z

Keywords

Navigation