Skip to main content
Log in

Temporal and spatial expression of MMP-2,-9,-14 and their inhibitors TIMP-1,-2,-3 in the corpus luteum of the cycling rhesus monkey

  • Published:
Science in China Series C Aims and scope Submit manuscript

Abstract

The corpus luteum (CL) is a transient endocrine organ that secretes progesterone to support early pregnancy. If implantation is unsuccessful, luteolysis is initiated. Extensive tissue remodeling occurs during CL formation and luteolysis. In this study, we have studied the possible involvement of MMP-2,-9,-14, and their inhibitors, TIMP-1,-2,-3 in the CL of cycling rhesus monkey at various stages by in situ hybridization, immunohistochemistry and microscopic assessment. The results showed that the MMP-2 mRNA and protein were mainly expressed in the endothelial cells at the early and middle stages of the CL development, while their expressions were observed in the luteal cells at the late stage during luteal regression. MMP-9 protein was detected in the CL at the early and middle stages, and obviously increased at the late stage. The expressions of MMP-14 and TIMP-1 mRNA were high at the early and late stages, and low at the middle stage. TIMP-2 mRNA was high throughout all the stages, the highest level could be observed at the late stage. The TIMP-3 production was detected throughout all the stages, but obviously declined during CL regression. MMP-9,-14 and TIMP-1,-2,-3 were mainly localized in the cytoplasm of the steroidogenic cells. The results suggest that the MMP/TIMP system is involved in regulation of CL development in the primate, and the coordinated expression of MMP-2,-14 and TIMP-1,-3 may have a potential role in the CL formation and the functional maintaining, while the interaction of MMP-2,-9,-14 and TIMP-1,-2,-3 might also play a role in CL regression at the late stage of CL development in the primate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hazzard, T. M., Stouffer, R. L., Angiogenesis in ovarian follicular and luteal development, Baillieres Best Pract. Res. Clin. Obstet. Gynaecol., 2000, 14: 883–900.

    Article  CAS  PubMed  Google Scholar 

  2. Reynolds, L. P., Grazul-Bilska, A. T., Redmer, D. A., Angiogenesis in the corpus luteum, Endocrine, 2000, 12: 1–9.

    Article  CAS  PubMed  Google Scholar 

  3. Reynolds, L. P., Redmer, D. A., Growth and development of corpus luteum, J. Reprod. Fertil. Suppl., 1999, 54: 181–191.

    CAS  PubMed  Google Scholar 

  4. Rothchild, I., The regulation of the mammalian corpus luteum, Recent Prog. Horm. Res., 1981, 37: 183–298.

    CAS  PubMed  Google Scholar 

  5. Niswender, G. D., Nett, T. M., The corpus luteum and its control in infraprimate species, in The Physiology of Reproduction (eds. Knobil, E., Neill, J.), New York: Raven Press, 2000, 781–816.

    Google Scholar 

  6. Liu, K., Brandstrom, A., Liu, Y. X. et al., Coordinated expression of tissue-type plasminogen activator and plasminogen activator inhibitor type-1 during corpus luteum formation and luteolysis in the adult pseudopregnant rats, Endocrinology, 1996, 137: 2126–2132.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, K., Liu, Y. X., Hu, Z. Y. et al., Temporal expression of urokinase type plasminogen activator, plasminogen activator inhibitor type-1 in rhesus monkey corpus luteum during the luteal maintenance and regression, Mol. Cell Endocrinol., 1997, 133: 109–116.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, K., Olofsson, J. I., Wahlberh, P. et al., Distinct expression of gelatinase A [matrix metalloproteinase (MMP)-2], collagenase-3 (MMP-13), membrane type MMP 1 (MMP-14), and tissue inhibitor of MMPs Type 1 mediated by physiological signals during formation and regression of the rat corpus luteum, Endocrinology, 1999, 140: 5330–5338.

    CAS  PubMed  Google Scholar 

  9. Duncan, W. C., The human corpus luteum: Remodelling during luteolysis and maternal recognition of pregnancy, Rev. Reprod., 2000, 5: 12–17.

    CAS  PubMed  Google Scholar 

  10. Curry, T. E. Jr., Osteen, K., Cyclic changes in the matrix metalloproteinase system in the ovary and uterus, Biol. Reprod., 2001, 64: 1285–1296.

    Article  CAS  PubMed  Google Scholar 

  11. Smith, M. F., McIntush, E. W., Ricke, W. A. et al., Regulation of ovarian extracellular matrix remodelling by metalloproteinases and their tissue inhibitors: Effects on follicular development, ovulation and luteal function, J. Reprod. Fertil. Suppl., 1999, 54: 367–381.

    CAS  PubMed  Google Scholar 

  12. Liu, Y. X., Chen, Y. X., Shi, F. W. et al., Studies on the role of plasminogen activators and plasminogen activator inhibitor type-1 in rat corpus luteum of pregnancy, Biol. Reprod., 1995, 53: 1131–1138.

    CAS  PubMed  Google Scholar 

  13. Liu, K., Feng, Q., Gao, H. J. et al., Expression and regulation of plasminogen activators, plasminogen activator inhibitor type-1, and steroidogenic acute regulatory protein in the rhesus monkey corpus luteum, Endocrinology, 2003, 144(8): 3611–3617.

    Article  CAS  PubMed  Google Scholar 

  14. Feng, Q., Liu, K., Hu, Z. Y. et al., The possible involvevement of tissue type plasminogen activator in luteolysis of rhesus monkey, Hum. Reprod., 1993, 8: 1640–1644.

    CAS  PubMed  Google Scholar 

  15. Curry, T. E. Jr., Osteen, K., The matrix metalloproteinase system: Changes, regulation, and impact throughout the ovarian and uterine reproductive cycle, Endocr. Rev., 2003, 24(4): 428–465.

    Article  CAS  PubMed  Google Scholar 

  16. Brew, K., Dinakarpandian, D., Nagase, H., Tissue inhibitors of metalloproteinases: Evolution, structure and function, Biochim Biophys Acta, 2000, 1477: 267–283.

    CAS  PubMed  Google Scholar 

  17. Gomez, D. E., Alonzo, D. F., Yoshiji, H. et al., Tissue inhibitors of metalloproteinases: Structure, regulation and biological functions, Eur. J. Cell. Biol., 1997, 74: 111–122.

    CAS  PubMed  Google Scholar 

  18. Staskus, P. W., Masiarz, F. R., Pallanck, L. J. et al., The 21 kDa protein is a transformation-sensitive metalloproteinase inhibitor of chicken fibroblasts, J. Biol. Chem., 1991, 266: 449–454.

    CAS  PubMed  Google Scholar 

  19. Leco, K. J., Khokha, R., Pavloff, N. et al., Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular ma-trixassociated protein with a distinctive pattern of expression in mouse cells and tissues, J. Biol. Chem., 1994, 269: 9352–9360.

    CAS  PubMed  Google Scholar 

  20. Hayakawa, T. K., Yamashita, K., Tanzawa, E. et al., Growthpromoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells: A possible new growth factor in serum, FEBS Lett., 1992, 298: 29–32.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, M. D., Kim, H. R. C., Chesler, L. G. et al., Inhibition of angiogenesis by tissue inhibitor of metalloproteinase, J. Cell Physiol., 1994, 160: 194–202.

    Article  CAS  PubMed  Google Scholar 

  22. Murphy, A. N., Unsworth, E. J., Stetler-Stevenson, W. G., Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation, J. Cell Physiol., 1993, 157: 351–358.

    Article  CAS  PubMed  Google Scholar 

  23. Bond, M., Murphy, G., Bennett, M. R. et al., Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity, J. Biol. Chem., 2000, 275: 41358–41363.

    Article  CAS  PubMed  Google Scholar 

  24. Bond, M., Murphy, G., Bennett, M. R. et al., Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type II apoptotic pathway, J. Biol. Chem., 2002, 277: 13787–13795.

    Article  CAS  PubMed  Google Scholar 

  25. Mannello, F., Gazzanelli, G., Tissue inhibitors of metalloproteinases and programmed cell death: Conundrums, controversies and potential implications, Apoptosis, 2001, 6: 479–482.

    Article  CAS  PubMed  Google Scholar 

  26. Boujrad, N., Ogwuegbu, S. O., Garnier, M. et al., Identification of a stimulator of steroid hormone synthesis isolated from testis, Science, 1995, 268: 1609–1612.

    CAS  PubMed  Google Scholar 

  27. Nothnick, W. B., Soloway, P., Curry, T. E. Jr., Assessment of the role of tissue inhibitor of metalloproteinase-1 (TIMP-1) during the pe-riovulatory period in female mice lacking a functional TIMP-1 gene, Biol. Reprod., 1999, 56: 1181–1188.

    Google Scholar 

  28. Nothnick, W. B., Disruption of the tissue inhibitor of metalloproteinase-1 gene results in altered reproductive cyclicity and uterine morphology in reproductive-age female mice, Biol. Reprod., 2000, 63: 905–912.

    Article  CAS  PubMed  Google Scholar 

  29. Christenson, L. K., Stouffer, R. L., Proliferation of microvascular endothelial cells in the primate corpus luteum during the menstrual cycle and simulated early pregnancy, Endocrinology, 1996, 137(1): 367–374.

    Google Scholar 

  30. Wulff, C., Dickson, S. E., Duncan, W. C. et al., Angiogenesis in the human corpus luteum: Simulated early pregnancy by hCG treatment is associated with both angiogenesis and vessel stabilization, Hum. Reprod., 2001, 16(12): 2515–2524.

    Article  CAS  PubMed  Google Scholar 

  31. Gao, F., Chen, X. L., Wei, P. et al., Expression of matrix metalloproteinase-2, tissue inhibitors of metalloproteinase-1,-3 at the implantation site of rhesus monkey during the early stage of pregnancy. Endocrine, 2001, 16(1): 47–54.

    Article  CAS  PubMed  Google Scholar 

  32. Yue, Z. P., Yang, Z. M., Wei, P. et al., Leukemia inhibitory factor, leukemia inhibitory factor receptor, and glycoprotein 130 in rhesus monkey uterus during menstrual cycle and early pregnancy, Biol. Reprod., 2000, 63: 508–512.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y. X., Liu, K., Feng, Q., Hu, Z. Y. et al., Tissue-type plasminogen activator and its inhibitor plasminogen activator inhibitor type 1 are coordinately expressed during ovulation in the rhesus monkey, Endocrinology, 2004, 145(4): 1767–1775.

    Google Scholar 

  34. Chen, Y. J., Feng, Q., Liu, Y. X., Expression of the steroidogenic acute regulatory protein and luteinizing hormone receptor and their regulation by tumor necrosis factor a in rat corpora lutea, Biol. Reprod., 1999, 60: 419–427.

    CAS  PubMed  Google Scholar 

  35. Duncan, W. C., McNeilly, A. S., Illingworth, P. J., The effect of luteal “rescue” on the expression and localization of matrix metallopro-teinases and their tissue inhibitors in the human corpus luteum, J. Clin. Endocrinol. Metab., 1998, 83: 2470–2478.

    Article  CAS  PubMed  Google Scholar 

  36. Manase, K., Endo, T., Henmi, H. et al., The significance of membrane type 1 metalloproteinase in structural involution of human corpora lutea, Mol. Hum. Reprod., 2002, 8(8): 742–749.

    Article  CAS  PubMed  Google Scholar 

  37. Goldberg, M. J., Moses, M. A., Tsang, P. C., Identification of matrix metalloproteinases and metalloproteinase inhibitors in bovine corpora lutea and their variation during the estrous cycle, J. Anim. Sci., 1996, 74: 849–857.

    CAS  PubMed  Google Scholar 

  38. Findlay, J. K., Angiogenesis in reproductive tissues, J. Endocrinol., 1986, 111: 357–366.

    CAS  PubMed  Google Scholar 

  39. Sato, H., Takino, T., Kinoshita, T. et al., Cell surface binding and activation of gelatinase A induced by expression of membrane-type-1-matrix metallopro-teinase (MT1-MMP), FEBS Lett., 1996, 385(3): 238–340.

    Google Scholar 

  40. Knauper, V., Will, H., Lopez-Otin, C. et al., Cellular mechanisms for human pro-collagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme, J. Biol. Chem., 1996, 271(29): 17124–17131.

    Google Scholar 

  41. Ricke, W. A., Smith, G. W., Reynolds, L. P. et al., Matrix metalloproteinase (2, 9, and 14) expression, localization, and activity in ovine corpora lutea throughout the estrous cycle, Biol. Reprod., 2002, 66(4): 1083–1094

    Article  CAS  PubMed  Google Scholar 

  42. Young, K. A., Hennebold, J. D., Stouffer, R. L., Dynamic expression of mRNAs and proteins for matrix metalloproteinases and their tis-sue inhibitors in the primate corpus luteum during the menstrual cycle, Mol. Hum. Reprod., 2002, 8(9): 833–840.

    Article  CAS  PubMed  Google Scholar 

  43. Li, Q. L., Wang, H. M., Lin, H. Y. et al., Expression of gelatinases and their tissue inhibitors in rat corpus luteum during pregnancy and postpartum, Mol. Reprod. Dev., 2002, 63(3): 273–281.

    Article  CAS  PubMed  Google Scholar 

  44. Nothnick, W. B., Edwards, D. R., Leco, K. J. et al., Expression and activity of ovarian tissue inhibitors of metalloproteinases during pseudopregnancy in the rat, Biol. Reprod., 1995, 53(3): 684–691.

    Article  CAS  PubMed  Google Scholar 

  45. Fassina, G., Ferrari, N., Brigati, C. et al., Tissue inhibitors of metalloproteases: Regulation and biological activities, Clin. Exp. Metastasis, 2000, 18: 111–120.

    Article  CAS  PubMed  Google Scholar 

  46. Aston, K. E., Stamouli, A., Thomas, E. J. et al., Effect of gonadotrophin on cell and matrix retention and expression of metalloproteinases and their inhibitor in cultured human granulosa cells modelling corpus luteum function, Mol. Hum. Reprod., 1996, 2: 26–30.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yixun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Gao, H., Gao, F. et al. Temporal and spatial expression of MMP-2,-9,-14 and their inhibitors TIMP-1,-2,-3 in the corpus luteum of the cycling rhesus monkey. SCI CHINA SER C 49, 37–45 (2006). https://doi.org/10.1007/s11427-004-0120-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-004-0120-5

Keywords

Navigation