Skip to main content
Log in

Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Porous crystalline metal-organic frameworks (MOFs) are one class of promising electrode materials for CO2 electroreduction reaction (CO2RR) by virtue of their large CO2 adsorption capacities and abundant tunable active sites, but their insulating nature usually leads to low current density. Herein, a two-dimensional (2D) Ni-phthalocyanine-based MOF (NiPc-Ni(NH)4) constructed by 2,3,9,10,16,17,23,24-octaaminophthalocyaninato nickel(II) (NiPc-(NH2)8) and nickel(II) ions attained high electrical conductivity due to the high overlap of d-π conjugation orbitals between the nickel node and the Ni-phthalocyanine-substituted o-phenylenediamine. During CO2RR, the NiPc-Ni(NH)4 nanosheets achieved a high CO Faradaic efficiency of 96.4% at −0.7 V and a large CO partial current density of 24.8 mA cm−2 at −1.1 V, which surpassed all the reported two-dimensional MOF electrocatalysts evaluated in an H-cell. The control experiments and density functional theory (DFT) calculations suggested that the Ni-N4 units of the phthalocyanine ring are the catalytic active sites. This work provides a new route to the design of highly efficient porous framework materials for the enhanced electrocatalysis via improving electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gattuso JP, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner HO, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C. Science, 2015, 349: aac4722

    Article  PubMed  CAS  Google Scholar 

  2. Wu Q, Xie RK, Mao MJ, Chai GL, Yi JD, Zhao SS, Huang YB, Cao R. ACS Energy Lett, 2020, 5: 1005–1012

    Article  CAS  Google Scholar 

  3. He C, Chen S, Long R, Song L, Xiong Y. Sci China Chem, 2020, 63: 1721–1726

    Article  CAS  Google Scholar 

  4. Zhang MD, Si DH, Yi JD, Zhao SS, Huang YB, Cao R. Small, 2020, 16: 2005254

    Article  CAS  Google Scholar 

  5. Tan X, Sun X, Han B. Natl Sci Rev, 2021, nwab022

  6. Wu Q, Mao MJ, Wu QJ, Liang J, Huang YB, Cao R. Small, 2021, 17: 2004933

    Article  CAS  Google Scholar 

  7. Hou Y, Huang YB, Liang YL, Chai GL, Yi JD, Zhang T, Zang KT, Luo J, Xu R, Lin H, Zhang SY, Wang HM, Cao R. CCS Chem, 2019, 1: 384–395

    Article  CAS  Google Scholar 

  8. Zheng T, Jiang K, Wang H. Adv Mater, 2018, 30: 1802066

    Article  CAS  Google Scholar 

  9. Sun Y, Cai X, Hu W, Liu X, Zhu Y. Sci China Chem, 2020, 64: 1065–1075

    Article  CAS  Google Scholar 

  10. Zhu W, Zhang L, Yang P, Hu C, Luo Z, Chang X, Zhao ZJ, Gong J. Angew Chem Int Ed, 2018, 57: 11544–11548

    Article  CAS  Google Scholar 

  11. Ren X, Liu S, Li H, Ding J, Liu L, Kuang Z, Li L, Yang H, Bai F, Huang Y, Zhang T, Liu B. Sci China Chem, 2020, 63: 1727–1733

    Article  CAS  Google Scholar 

  12. Li M, Wang H, Luo W, Sherrell PC, Chen J, Yang J. Adv Mater, 2020, 32: 2001848

    Article  CAS  Google Scholar 

  13. Wu Q, Liang J, Xie ZL, Huang YB, Cao R. ACS Mater Lett, 2021, 3: 454–461

    Article  CAS  Google Scholar 

  14. Kramer WW, McCrory CCL. Chem Sci, 2016, 7: 2506–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng Y, Veder JP, Thomsen L, Zhao S, Saunders M, Demichelis R, Liu C, De Marco R, Jiang SP. J Mater Chem A, 2018, 6: 1370–1375

    Article  CAS  Google Scholar 

  16. Zhang K, Liang Z, Zou R. Sci China Chem, 2020, 63: 7–10

    Article  CAS  Google Scholar 

  17. Morozan A, Jaouen F. Energy Environ Sci, 2012, 5: 9269–9290

    Article  CAS  Google Scholar 

  18. Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA. Chem Soc Rev, 2014, 43: 6062–6096

    Article  CAS  PubMed  Google Scholar 

  19. Diercks CS, Liu Y, Cordova KE, Yaghi OM. Nat Mater, 2018, 17: 301–307

    Article  CAS  PubMed  Google Scholar 

  20. Ban Y, Cao N, Yang W. Research, 2020, 2020: 1583451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meng DL, Chen CH, Yi JD, Wu Q, Liang J, Huang YB, Cao R. Research, 2019, 2019: 1768595

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo Y, Shi W, Yang H, He Q, Zeng Z, Ye JY, He X, Huang R, Wang C, Lin W. J Am Chem Soc, 2019, 141: 17875–17883

    Article  CAS  PubMed  Google Scholar 

  23. Ye L, Liu J, Gao Y, Gong C, Addicoat M, Heine T, Wöll C, Sun L. J Mater Chem A, 2016, 4: 15320–15326

    Article  CAS  Google Scholar 

  24. Hod I, Sampson MD, Deria P, Kubiak CP, Farha OK, Hupp JT. ACS Catal, 2015, 5: 6302–6309

    Article  CAS  Google Scholar 

  25. Xiong W, Li H, You H, Cao M, Cao R. Natl Sci Rev, 2020, 7: 609–619

    Article  CAS  PubMed  Google Scholar 

  26. Xie LS, Skorupskii G, Dincă M. Chem Rev, 2020, 120: 8536–8580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matheu R, Gutierrez-Puebla E, Monge MÁ, Diercks CS, Kang J, Prévot MS, Pei X, Hanikel N, Zhang B, Yang P, Yaghi OM. J Am Chem Soc, 2019, 141: 17081–17085

    Article  CAS  PubMed  Google Scholar 

  28. Stassen I, Dou JH, Hendon C, Dincă M. ACS Cent Sci, 2019, 5: 1425–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yi JD, Xie R, Xie ZL, Chai GL, Liu TF, Chen RP, Huang YB, Cao R. Angew Chem Int Ed, 2020, 59: 23641–23648

    Article  CAS  Google Scholar 

  30. Zhong H, Ghorbani-Asl M, Ly KH, Zhang J, Ge J, Wang M, Liao Z, Makarov D, Zschech E, Brunner E, Weidinger IM, Zhang J, Krasheninnikov AV, Kaskel S, Dong R, Feng X. Nat Commun, 2020, 11: 1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang XD, Hou SZ, Wu JX, Gu ZY. Chem Eur J, 2020, 26: 1604–1611

    Article  CAS  PubMed  Google Scholar 

  32. Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M. J Am Chem Soc, 2014, 136: 8859–8862

    Article  CAS  PubMed  Google Scholar 

  33. Jia H, Yao Y, Zhao J, Gao Y, Luo Z, Du P. J Mater Chem A, 2018, 6: 1188–1195

    Article  CAS  Google Scholar 

  34. Lian Y, Yang W, Zhang C, Sun H, Deng Z, Xu W, Song L, Ouyang Z, Wang Z, Guo J, Peng Y. Angew Chem Int Ed, 2020, 59: 286–294

    Article  CAS  Google Scholar 

  35. Chen T, Dou JH, Yang L, Sun C, Libretto NJ, Skorupskii G, Miller JT, Dincă M. J Am Chem Soc, 2020, 142: 12367–12373

    Article  CAS  PubMed  Google Scholar 

  36. Hu JX, Jiang XF, Ma YJ, Liu XR, Ge BD, Wang AN, Wei Q, Wang GM. Sci China Chem, 2021, 64: 432–438

    Article  CAS  Google Scholar 

  37. Fei H, Dong J, Arellano-Jiménez MJ, Ye G, Dong Kim N, Samuel ELG, Peng Z, Zhu Z, Qin F, Bao J, Yacaman MJ, Ajayan PM, Chen D, Tour JM. Nat Commun, 2015, 6: 8668

    Article  CAS  PubMed  Google Scholar 

  38. Han Y, Wang YG, Chen W, Xu R, Zheng L, Zhang J, Luo J, Shen RA, Zhu Y, Cheong WC, Chen C, Peng Q, Wang D, Li Y. J Am Chem Soc, 2017, 139: 17269–17272

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Li N, Xu Y, Pang H. Chem Eur J, 2020, 26: 6402–6422

    Article  CAS  PubMed  Google Scholar 

  40. Peng Y, Yang W. Sci China Chem, 2019, 62: 1561–1575

    Article  CAS  Google Scholar 

  41. Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D, Lin S, Chang CJ, Yaghi OM, Yang P. J Am Chem Soc, 2015, 137: 14129–14135

    Article  CAS  PubMed  Google Scholar 

  42. Guntern YT, Pankhurst JR, Vávra J, Mensi M, Mantella V, Schouwink P, Buonsanti R. Angew Chem Int Ed, 2019, 58: 12632–12639

    Article  CAS  Google Scholar 

  43. Mao F, Jin YH, Liu PF, Yang P, Zhang L, Chen L, Cao XM, Gu J, Yang HG. J Mater Chem A, 2019, 7: 23055–23063

    Article  CAS  Google Scholar 

  44. Dong BX, Qian SL, Bu FY, Wu YC, Feng LG, Teng YL, Liu WL, Li ZW. ACS Appl Energy Mater, 2018, 1: 4662–4669

    Article  CAS  Google Scholar 

  45. Wang Y, Hou P, Wang Z, Kang P. ChemPhysChem, 2017, 18: 3142–3147

    Article  CAS  PubMed  Google Scholar 

  46. Jiang X, Li H, Xiao J, Gao D, Si R, Yang F, Li Y, Wang G, Bao X. Nano Energy, 2018, 52: 345–350

    Article  CAS  Google Scholar 

  47. Yang Z, Zhang X, Long C, Yan S, Shi Y, Han J, Zhang J, An P, Chang L, Tang Z. CrystEngComm, 2020, 22: 1619–1624

    Article  CAS  Google Scholar 

  48. Zhu S, Li T, Cai WB, Shao M. ACS Energy Lett, 2019, 4: 682–689

    Article  CAS  Google Scholar 

  49. Zhang MD, Yi JD, Huang YB, Cao R. Chin J Struct Chem, 2021, doi: https://doi.org/10.14102/j.cnki.0254-5861.2011-3118

  50. Wang L, Chen W, Zhang D, Du Y, Amal R, Qiao S, Wu J, Yin Z. Chem Soc Rev, 2019, 48: 5310–5349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China (2018YFA0208600, 2018YFA0704502), the National Natural Science Foundation of China (21871263, 22071245, 21671188, 22033008), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000) and the Youth Innovation Promotion Association, CAS (Y201850). The authors thank the beamline BL14W1 station for XAS measurements at the Shanghai Synchrotron Radiation Facility, China. The authors thank Associate Prof. Mei-Rong Ke in Fuzhou University and Prof. Vefa Ahsen in Gebze Institute of Technology for guiding the synthesis of NiPc-(NHTs)8.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Biao Huang or Rong Cao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2021_1022_MOESM1_ESM.pdf

Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MD., Si, DH., Yi, JD. et al. Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction. Sci. China Chem. 64, 1332–1339 (2021). https://doi.org/10.1007/s11426-021-1022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1022-3

Keywords

Navigation