Skip to main content
Log in

Elaboration of phosphoramidite ligands enabling palladium-catalyzed diastereo- and enantioselective all carbon [4+3] cycloaddition

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A palladium-catalyzed diastereo- and enantioselective all carbon [4+3] cycloaddition of trimethylenemethane was developed by employing the elaborate tetrahydroquinoline-derived phosphoramidite ligand. The exclusive regioselectivity was realized by using the aromatization-driven diene indole-2,3-quinodimethanes, affording biologically important cyclohepta[b]indoles with excellent diastereo-, and enantioselectivities (up to >20:1 dr, >99% ee). Furthermore, the more challenging pyrrolidone-3,4-dienes, in the absence of aromatization force, were also compatible inthereaction, providing novel cyclohepta[c]pyrrol-1(2H)-ones with excellent regio-, diastereo-, and enantioselectivities (up to >20:1 rr, >20:1 dr, >99% ee).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Trost BM, Chan DMT. J Am Chem Soc, 1979, 101: 6429–6432

    Article  CAS  Google Scholar 

  2. Yamamoto A, Ito Y, Hayashi T. Tetrahedron Lett, 1989, 30: 375–378

    Article  CAS  Google Scholar 

  3. Trost BM, Stambuli JP, Silverman SM, Schwörer U. J Am Chem Soc, 2006, 128: 13328–13329

    Article  CAS  Google Scholar 

  4. Trost BM, Cramer N, Silverman SM. J Am Chem Soc, 2007, 129: 12396–12397

    Article  CAS  Google Scholar 

  5. Trost BM, Silverman SM, Stambuli JP. J Am Chem Soc, 2011, 133: 19483–19497

    Article  CAS  Google Scholar 

  6. Trost BM, Lam TM. J Am Chem Soc, 2012, 134: 11319–11321

    Article  CAS  Google Scholar 

  7. Trost BM, Bringley DA, Seng PS. Org Lett, 2012, 14: 234–237

    Article  CAS  Google Scholar 

  8. Trost BM, Maruniak A. Angew Chem Int Ed, 2013, 52: 6262–6264

    Article  CAS  Google Scholar 

  9. Trost BM, Bringley DA, Zhang T, Cramer N. J Am Chem Soc, 2013, 135: 16720–16735

    Article  CAS  Google Scholar 

  10. Trost BM, Bringley DA, O’Keefe BM. Org Lett, 2013, 15: 5630–5633

    Article  CAS  Google Scholar 

  11. Trost BM, Ehmke V, O’Keefe BM, Bringley DA. J Am Chem Soc, 2014, 136: 8213–8216

    Article  CAS  Google Scholar 

  12. Trost BM, Ehmke V. Org Lett, 2014, 16: 2708–2711

    Article  CAS  Google Scholar 

  13. Trost BM, Wang Y. Angew Chem Int Ed, 2018, 57: 11025–11029

    Article  CAS  Google Scholar 

  14. Trost BM, Zell D, Hohn C, Mata G, Maruniak A. Angew Chem Int Ed, 2018, 57: 12916–12920

    Article  CAS  Google Scholar 

  15. Trost BM, Zhang L, Lam TM. Org Lett, 2018, 20: 3938–3942

    Article  CAS  Google Scholar 

  16. Trost BM, Jiao Z, Hung CIJ. Angew Chem Int Ed, 2019, 58: 15154–15158

    Article  CAS  Google Scholar 

  17. Trost BM, Bringley DA, Silverman SM. J Am Chem Soc, 2011, 133: 7664–7667

    Article  CAS  Google Scholar 

  18. (a)_Trost BM, Bringley DA. Angew Chem Int Ed, 2013, 52: 4466–4469

    Article  Google Scholar 

  19. Trost BM, Mata G. Angew Chem Int Ed, 2018, 57: 12333–12337

    Article  CAS  Google Scholar 

  20. Trost BM, Silverman SM, Stambuli JP. J Am Chem Soc, 2007, 129: 12398–12399

    Article  CAS  Google Scholar 

  21. Trost BM, Silverman SM. J Am Chem Soc, 2010, 132: 8238–8240

    Article  CAS  Google Scholar 

  22. Trost BM, Silverman SM. J Am Chem Soc, 2012, 134: 4941–4954

    Article  CAS  Google Scholar 

  23. Trost BM, Lam TM, Herbage MA. J Am Chem Soc, 2013, 135: 2459–2461

    Article  CAS  Google Scholar 

  24. Shintani R, Park S, Duan WL, Hayashi T. Angew Chem Int Ed, 2007, 46: 5901–5903

    Article  CAS  Google Scholar 

  25. Trost BM, McDougall PJ, Hartmann O, Wathen PT. J Am Chem Soc, 2008, 130: 14960–14961

    Article  CAS  Google Scholar 

  26. Trost BM, Zuo Z. Angew Chem Int Ed, 2020, 59: 1243–1247

    Article  CAS  Google Scholar 

  27. Kumari P, Liu W, Wang CJ, Dai J, Wang MX, Yang QQ, Deng YH, Shao Z. Chin J Chem, 2020, 38: 151–157

    Article  CAS  Google Scholar 

  28. Liu YZ, Wang Z, Huang Z, Zheng X, Yang WL, Deng WP. Angew Chem Int Ed, 2020, 59: 1238–1242

    Article  CAS  Google Scholar 

  29. Trost BM, Nanninga TN, Chan DMT. Organometallics, 1982, 1: 1543–1545

    Article  CAS  Google Scholar 

  30. Trost BM, MacPherson DT. J Am Chem Soc, 1987, 109: 3483–3484

    Article  CAS  Google Scholar 

  31. Trost BM, Schneider S. Angew Chem Int Ed Engl, 1989, 28: 213–215

    Article  Google Scholar 

  32. Silverman SM. Palladium-catalyzed asymmetric trimethylenemethane cycloaddition: development and application to the synthesis of highly substituted carbocycles and heterocycles. Dissertation for the Doctoral Degree. Stanford: Stanford University, 2010. 360–365

    Google Scholar 

  33. Gu BQ, Yang WL, Wu SX, Wang YB, Deng WP. Org Chem Front, 2018, 5: 3430–3434

    Article  CAS  Google Scholar 

  34. de Vries AHM, Meetsma A, Feringa BL. Angew Chem Int Ed Engl, 1996, 35: 2374–2376

    Article  Google Scholar 

  35. Stempel E, Gaich T. Acc Chem Res, 2016, 49: 2390–2402

    Article  CAS  Google Scholar 

  36. Xu G, Chen L, Sun J. Org Lett, 2018, 20: 3408–3412

    Article  CAS  Google Scholar 

  37. Gelis C, Levitre G, Merad J, Retailleau P, Neuville L, Masson G. Angew Chem Int Ed, 2018, 57: 12121–12125

    Article  CAS  Google Scholar 

  38. Wu SX, Gu BQ, Xu H, Zheng X, Luo X, Deng WP. Adv Synth Catal, 2019, 361: 4302–4313

    Article  CAS  Google Scholar 

  39. CCDC 1951450 (compound 3a) and CCDC 1971932 (compound 5g) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre

  40. Filipuzzi S, Pregosin PS, Albinati A, Rizzato S. Organometallics, 2006, 25: 5955–5964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21772038, 21971062). We greatly appreciate the Research Center of Analysis and Test of East China University of Science and Technology for the assistance with the MS and NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu-Lin Yang or Wei-Ping Deng.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Sun, H., Yang, WL. et al. Elaboration of phosphoramidite ligands enabling palladium-catalyzed diastereo- and enantioselective all carbon [4+3] cycloaddition. Sci. China Chem. 63, 911–916 (2020). https://doi.org/10.1007/s11426-020-9718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9718-2

Keywords

Navigation